Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Immunol ; 212(11): 1621-1625, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619284

RESUMO

Humans experience frequent respiratory infections. Immunology and vaccinology studies in mice are typically performed in naive specific pathogen-free animals responding to their very first respiratory challenge. We found that the first respiratory infection induces lifelong enlargement of the lung-draining mediastinal lymph nodes (medLNs). Furthermore, infection-experienced medLNs supported better naive T cell surveillance and effector responses to new unrelated infections that exhibited more biased accumulation and memory establishment within the lung. Moreover, we observed that weight loss induced by influenza infection was substantially reduced in mice that had recovered from a previous unrelated respiratory viral challenge. These data show that the lack of infectious history and corresponding medLN hypoplasia in specific pathogen-free mice alter their immune response to lung infections. Preclinical vaccination and immunology studies should consider the previous infectious experience of the model organism.


Assuntos
Pulmão , Linfonodos , Infecções por Orthomyxoviridae , Animais , Camundongos , Linfonodos/imunologia , Infecções por Orthomyxoviridae/imunologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Linfócitos T/imunologia , Memória Imunológica/imunologia , Mediastino , Infecções Respiratórias/imunologia
2.
Nat Immunol ; 24(6): 903-914, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37156885

RESUMO

Specialized subpopulations of CD4+ T cells survey major histocompatibility complex class II-peptide complexes to control phagosomal infections, help B cells, regulate tissue homeostasis and repair or perform immune regulation. Memory CD4+ T cells are positioned throughout the body and not only protect the tissues from reinfection and cancer, but also participate in allergy, autoimmunity, graft rejection and chronic inflammation. Here we provide updates on our understanding of the longevity, functional heterogeneity, differentiation, plasticity, migration and human immunodeficiency virus reservoirs as well as key technological advances that are facilitating the characterization of memory CD4+ T cell biology.


Assuntos
Linfócitos T CD4-Positivos , Células T de Memória , Humanos , Memória Imunológica
3.
Nature ; 614(7949): 762-766, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653453

RESUMO

Differentiated somatic mammalian cells putatively exhibit species-specific division limits that impede cancer but may constrain lifespans1-3. To provide immunity, transiently stimulated CD8+ T cells undergo unusually rapid bursts of numerous cell divisions, and then form quiescent long-lived memory cells that remain poised to reproliferate following subsequent immunological challenges. Here we addressed whether T cells are intrinsically constrained by chronological or cell-division limits. We activated mouse T cells in vivo using acute heterologous prime-boost-boost vaccinations4, transferred expanded cells to new mice, and then repeated this process iteratively. Over 10 years (greatly exceeding the mouse lifespan)5 and 51 successive immunizations, T cells remained competent to respond to vaccination. Cells required sufficient rest between stimulation events. Despite demonstrating the potential to expand the starting population at least 1040-fold, cells did not show loss of proliferation control and results were not due to contamination with young cells. Persistent stimulation by chronic infections or cancer can cause T cell proliferative senescence, functional exhaustion and death6. We found that although iterative acute stimulations also induced sustained expression and epigenetic remodelling of common exhaustion markers (including PD1, which is also known as PDCD1, and TOX) in the cells, they could still proliferate, execute antimicrobial functions and form quiescent memory cells. These observations provide a model to better understand memory cell differentiation, exhaustion, cancer and ageing, and show that functionally competent T cells can retain the potential for extraordinary population expansion and longevity well beyond their organismal lifespan.


Assuntos
Divisão Celular , Senescência Celular , Longevidade , Ativação Linfocitária , Linfócitos T , Animais , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Memória Imunológica , Longevidade/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/citologia , Linfócitos T/imunologia , Senescência Celular/imunologia , Senescência Celular/fisiologia , Imunização Secundária , Vacinação , Transferência Adotiva , Fatores de Tempo , Infecções/imunologia , Doença Crônica , Epigênese Genética
4.
Sci Immunol ; 7(78): eadd3075, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36459542

RESUMO

Respiratory tract resident memory T cells (TRM), typically generated by local vaccination or infection, can accelerate control of pulmonary infections that evade neutralizing antibody. It is unknown whether mRNA vaccination establishes respiratory TRM. We generated a self-amplifying mRNA vaccine encoding the influenza A virus nucleoprotein that is encapsulated in modified dendron-based nanoparticles. Here, we report how routes of immunization in mice, including contralateral versus ipsilateral intramuscular boosts, or intravenous and intranasal routes, influenced influenza-specific cell-mediated and humoral immunity. Parabiotic surgeries revealed that intramuscular immunization was sufficient to establish CD8 TRM in the lung and draining lymph nodes. Contralateral, compared with ipsilateral, intramuscular boosting broadened the distribution of lymph node TRM and T follicular helper cells but slightly diminished resulting levels of serum antibody. Intranasal mRNA delivery established modest circulating CD8 and CD4 T cell memory but augmented distribution to the respiratory mucosa. Combining intramuscular immunizations with an intranasal mRNA boost achieved high levels of both circulating T cell memory and lung TRM. Thus, routes of mRNA vaccination influence humoral and cell-mediated immunity, and intramuscular prime-boosting establishes lung TRM that can be further expanded by an additional intranasal immunization.


Assuntos
Linfócitos T CD4-Positivos , Vacinação , Animais , Camundongos , RNA Mensageiro , Anticorpos Neutralizantes , Linfócitos T CD8-Positivos , Vacinas de mRNA
5.
Cell ; 185(4): 585-602.e29, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35051368

RESUMO

The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Magnésio/metabolismo , Animais , Infecções Bacterianas/imunologia , Restrição Calórica , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Células HEK293 , Humanos , Memória Imunológica , Sinapses Imunológicas/metabolismo , Imunoterapia , Ativação Linfocitária/imunologia , Sistema de Sinalização das MAP Quinases , Magnésio/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34772811

RESUMO

Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)-driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called "decimation," of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I-driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell-intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell-mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell-based vaccination against persistent viral diseases.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecção Persistente/imunologia , Vacinas/imunologia , Viroses/imunologia , Animais , Anticorpos Antivirais/imunologia , Apresentação de Antígeno/imunologia , Antivirais/imunologia , Células Cultivadas , Centro Germinativo/imunologia , Inflamação/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Células B de Memória/imunologia , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Vacinação/métodos
7.
Elife ; 102021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33684030

RESUMO

A hallmark of adaptive immunity is CD4 T cells' ability to differentiate into specialized effectors. A long-standing question is whether T cell receptor (TCR) signal strength can dominantly instruct the development of Th1 and T follicular helper (Tfh) cells across distinct infectious contexts. We characterized the differentiation of murine CD4 TCR transgenic T cells responding to altered peptide ligand lymphocytic choriomeningitis viruses (LCMV) derived from acute and chronic parental strains. We found that TCR signal strength exerts opposite and hierarchical effects on the balance of Th1 and Tfh cells responding to acute versus persistent infection. TCR signal strength correlates positively with Th1 generation during acute but negatively during chronic infection. Weakly activated T cells express lower levels of markers associated with chronic T cell stimulation and may resist functional inactivation. We anticipate that the panel of recombinant viruses described herein will be valuable for investigating a wide range of CD4 T cell responses.


Assuntos
Linfócitos T CD4-Positivos , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Viroses , Doença Aguda , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Células Cultivadas , Doença Crônica , Cricetinae , Feminino , Vírus da Coriomeningite Linfocítica , Masculino , Camundongos , Infecção Persistente/genética , Infecção Persistente/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Viroses/genética , Viroses/imunologia , Viroses/metabolismo , Replicação Viral
8.
Sci Immunol ; 6(55)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419790

RESUMO

Influenza is a deadly and costly infectious disease, even during flu seasons when an effective vaccine has been developed. To improve vaccines against respiratory viruses, a better understanding of the immune response at the site of infection is crucial. After influenza infection, clonally expanded T cells take up permanent residence in the lung, poised to rapidly respond to subsequent infection. Here, we characterized the dynamics and transcriptional regulation of lung-resident CD4+ T cells during influenza infection and identified a long-lived, Bcl6-dependent population that we have termed T resident helper (TRH) cells. TRH cells arise in the lung independently of lymph node T follicular helper cells but are dependent on B cells, with which they tightly colocalize in inducible bronchus-associated lymphoid tissue (iBALT). Deletion of Bcl6 in CD4+ T cells before heterotypic challenge infection resulted in redistribution of CD4+ T cells outside of iBALT areas and impaired local antibody production. These results highlight iBALT as a homeostatic niche for TRH cells and advocate for vaccination strategies that induce TRH cells in the lung.


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imunidade nas Mucosas , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
9.
Trends Immunol ; 41(6): 454-456, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32386961

RESUMO

T resident memory (Trm) cells provide a first line of defense in non-lymphoid tissues. A new report in Nature Immunology by Fonseca et al. reveals that CD8+ Trm cells can give rise to circulating effector and memory T cells, but remain predisposed to migrate back into their tissue of origin.


Assuntos
Memória Imunológica , Quarentena , Linfócitos T CD8-Positivos , Humanos
10.
Sci Immunol ; 5(45)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144185

RESUMO

CD4+ memory T cells play an important role in protective immunity and are a key target in vaccine development. Many studies have focused on T central memory (Tcm) cells, whereas the existence and functional significance of long-lived T follicular helper (Tfh) cells are controversial. Here, we show that Tfh cells are highly susceptible to NAD-induced cell death (NICD) during isolation from tissues, leading to their underrepresentation in prior studies. NICD blockade reveals the persistence of abundant Tfh cells with high expression of hallmark Tfh markers to at least 400 days after infection, by which time Tcm cells are no longer found. Using single-cell RNA-seq, we demonstrate that long-lived Tfh cells are transcriptionally distinct from Tcm cells, maintain stemness and self-renewal gene expression, and, in contrast to Tcm cells, are multipotent after recall. At the protein level, we show that folate receptor 4 (FR4) robustly discriminates long-lived Tfh cells from Tcm cells. Unexpectedly, long-lived Tfh cells concurrently express a distinct glycolytic signature similar to trained immune cells, including elevated expression of mTOR-, HIF-1-, and cAMP-regulated genes. Late disruption of glycolysis/ICOS signaling leads to Tfh cell depletion concomitant with decreased splenic plasma cells and circulating antibody titers, demonstrating both unique homeostatic regulation of Tfh and their sustained function during the memory phase of the immune response. These results highlight the metabolic heterogeneity underlying distinct long-lived T cell subsets and establish Tfh cells as an attractive target for the induction of durable adaptive immunity.


Assuntos
Imunidade Humoral/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/farmacologia , Receptores Purinérgicos P2X7/deficiência , Receptores Purinérgicos P2X7/imunologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos
11.
Bioorg Med Chem Lett ; 26(19): 4790-4794, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27561716

RESUMO

A series of PI3Kδ inhibitors derived from the pan-PI3K inhibitor ZSTK474 was prepared that target a non-conserved region of the catalytic site. Dependent upon the substituents present, these analogues show different levels of isoform selectivity and sensitivity to the mutation N836D in PI3Kδ. As a marker of 'on-target' activity and permeability, a selection of the most potent PI3Kδ inhibitors were shown to inhibit pAkt production in the Nawalma Burkitt lymphoma cell line.


Assuntos
Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Linhagem Celular Tumoral , Humanos , Isoenzimas/química , Fosfatidilinositol 3-Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA