Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
3.
Braz. arch. biol. technol ; Braz. arch. biol. technol;62: e19170775, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011522

RESUMO

Abstract Tissue engineering suggests different forms to reconstruct tissues and organs. One of the ways is through the use of polymeric biomaterials such as poly(L-lactic acid) (PLLA). PLLA is a recognized material in tissue engineering due to its characteristics as biocompatibility and bioresorbability. In this work PLLA fibrous membranes were produced by a simple technique known as rotary jet spinning. The rotary jet spinning consists of fibrous membranes production, with fibers of scale nano/micrometric, from a polymeric solution through the centrifugal force generated by the equipment. The membranes formed were subjected to preliminary in vitro assays to verify the cytotoxicity of the membranes made in contact with the cells. Direct cytotoxicity assays were performed through the MTT, AlamarBlue® and Live/Dead® tests, with fibroblastic and osteoblastic cells. The results obtained in this study showed that PLLA membranes produced by rotary jet spinning showed promising results in the 24-hours contact period of the cells with the PLLA fibrous membranes. The information presented in this preliminary study provides criteria to be taken in the future procedures that will be performed with the biomaterial produced, aiming at its improvement.


Assuntos
Materiais Biocompatíveis , Ácido Láctico , Engenharia Tecidual/métodos , Técnicas In Vitro/instrumentação
4.
Einstein (Sao Paulo) ; 16(3): eRB4538, 2018 Sep 21.
Artigo em Inglês, Português | MEDLINE | ID: mdl-30281764

RESUMO

Cardiovascular diseases are the major cause of death worldwide. The heart has limited capacity of regeneration, therefore, transplantation is the only solution in some cases despite presenting many disadvantages. Tissue engineering has been considered the ideal strategy for regenerative medicine in cardiology. It is an interdisciplinary field combining many techniques that aim to maintain, regenerate or replace a tissue or organ. The main approach of cardiac tissue engineering is to create cardiac grafts, either whole heart substitutes or tissues that can be efficiently implanted in the organism, regenerating the tissue and giving rise to a fully functional heart, without causing side effects, such as immunogenicity. In this review, we systematically present and compare the techniques that have drawn the most attention in this field and that generally have focused on four important issues: the scaffold material selection, the scaffold material production, cellular selection and in vitro cell culture. Many studies used several techniques that are herein presented, including biopolymers, decellularization and bioreactors, and made significant advances, either seeking a graft or an entire bioartificial heart. However, much work remains to better understand and improve existing techniques, to develop robust, efficient and efficacious methods.


Assuntos
Transplante de Coração/métodos , Miocárdio/citologia , Engenharia Tecidual/métodos , Biopolímeros , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Transplante de Coração/tendências , Humanos , Engenharia Tecidual/tendências , Alicerces Teciduais
5.
F1000Res ; 7: 729, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687496

RESUMO

Background: The availability of commercial tissue engineering skin repair products for veterinary use is scarce or non-existent. To assess features of novel veterinary tissue engineered medical devices, it is therefore reasonable to compare with currently available human devices. During the development and regulatory approval phases, human medical devices that may have been identified as comparable to a novel veterinary device, may serve as predicate devices and accelerate approval in the veterinary domain. The purpose of the study was to evaluate safety and efficacy of the biomembrane for use in skin repair indications. Methods: In the study as a whole (3 year total length), 15 patients (animals), dogs and cats (male/female, <8 years) with skin lesions of different etiologies considered difficult to heal (size, >2 cm), with a wound depth equivalent to 2nd/3rd degree burns are to be studied from Day 0 to Day 120-240, post-application of the biomembrane. This interim report covers the 5 patients assessed to date and deemed eligible, of which 3 enrolled, and 2 have completed the treatment. Wound beds were prepared and acellular collagen biomembranes (Eva Scientific Ltd, São Paulo, Brazil) applied directly onto the wounds, and sutured at the margins to the patient's adjacent tissue. Wound size over time, healing rate, general skin quality and suppleness were assessed as outcomes. Qualitative (appearance and palpation) and quantitative (based on Image Analysis of photographs) wound assessment techniques were used. Results: Both patients' wounds healed fully, with no adverse effects, and the healing rate was comparable in both, maxing out at approximately 1 cm 2/day. Conclusions: Early results on the biomembrane's safety and efficacy indicate suitability for skin repair usage in veterinary patients.


Assuntos
Bandagens , Queimaduras/terapia , Colágeno , Membranas Artificiais , Pele/lesões , Engenharia Tecidual , Cicatrização , Animais , Brasil , Queimaduras/patologia , Gatos , Colágeno/química , Colágeno/farmacologia , Cães , Feminino , Masculino , Pele/patologia
6.
Einstein (Säo Paulo) ; 16(3): eRB4538, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-953182

RESUMO

ABSTRACT Cardiovascular diseases are the major cause of death worldwide. The heart has limited capacity of regeneration, therefore, transplantation is the only solution in some cases despite presenting many disadvantages. Tissue engineering has been considered the ideal strategy for regenerative medicine in cardiology. It is an interdisciplinary field combining many techniques that aim to maintain, regenerate or replace a tissue or organ. The main approach of cardiac tissue engineering is to create cardiac grafts, either whole heart substitutes or tissues that can be efficiently implanted in the organism, regenerating the tissue and giving rise to a fully functional heart, without causing side effects, such as immunogenicity. In this review, we systematically present and compare the techniques that have drawn the most attention in this field and that generally have focused on four important issues: the scaffold material selection, the scaffold material production, cellular selection and in vitro cell culture. Many studies used several techniques that are herein presented, including biopolymers, decellularization and bioreactors, and made significant advances, either seeking a graft or an entire bioartificial heart. However, much work remains to better understand and improve existing techniques, to develop robust, efficient and efficacious methods.


RESUMO Doenças cardiovasculares são responsáveis pelo maior número de mortes no mundo. O coração possui capacidade de regeneração limitada, e o transplante, por consequência, representa a única solução em alguns casos, apresentando várias desvantagens. A engenharia de tecidos tem sido considerada a estratégia ideal para a medicina cardíaca regenerativa. Trata-se de uma área interdisciplinar, que combina muitas técnicas as quais buscam manter, regenerar ou substituir um tecido ou órgão. A abordagem principal da engenharia de tecidos cardíacos é criar enxertos cardíacos, sejam substitutos do coração inteiro ou de tecidos que podem ser implantados de forma eficiente no organismo, regenerando o tecido e dando origem a um coração completamente funcional, sem desencadear efeitos colaterais, como imunogenicidade. Nesta revisão, apresentase e compara-se sistematicamente as técnicas que ganharam mais atenção nesta área e que geralmente focam em quatro assuntos importantes: seleção do material a ser utilizado como enxerto, produção do material, seleção das células e cultura de células in vitro. Muitos estudos, fazendo uso de várias das técnicas aqui apresentadas, incluindo biopolímeros, descelularização e biorreatores, têm apresentado avanços significativos, seja para obter um enxerto ou um coração bioartifical inteiro. No entanto, ainda resta um grande esforço para entender e melhorar as técnicas existentes, para desenvolver métodos robustos, eficientes e eficazes.


Assuntos
Humanos , Transplante de Coração/métodos , Engenharia Tecidual/métodos , Miocárdio/citologia , Biopolímeros , Transplante de Coração/tendências , Técnicas de Cultura de Células/métodos , Reatores Biológicos , Engenharia Tecidual/tendências , Alicerces Teciduais
7.
Biomaterials ; 34(35): 8860-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23968855

RESUMO

Limbal epithelial stem cells are responsible for the maintenance of the human corneal epithelium and these cells reside in a specialised stem cell niche. They are located at the base of limbal crypts, in a physically protected microenvironment in close proximity to a variety of neighbouring niche cells. Design and recreation of elements of various stem cell niches have allowed researchers to simplify aspects of these complex microenvironments for further study in vitro. We have developed a method to rapidly and reproducibly create bioengineered limbal crypts (BLCs) in a collagen construct using a simple one-step method. Liquid is removed from collagen hydrogels using hydrophilic porous absorbers (HPAs) that have custom moulded micro-ridges on the base. The resulting topography on the surface of the thin collagen constructs resembles the dimensions of the stromal crypts of the human limbus. Human limbal epithelial cells seeded onto the surface of the constructs populate these BLCs and form numerous layers with a high proportion of the cells lining the crypts expressing putative stem cell marker, p63α. The HPAs are produced using a moulding process that is flexible and can be adapted depending on the requirements of the end user. Creation of defined topographical features using this process could be applicable to numerous tissue-engineering applications where varied 3-dimensional niche architectures are required.


Assuntos
Biomimética , Células Epiteliais/citologia , Epitélio Corneano/citologia , Limbo da Córnea/citologia , Engenharia Tecidual/métodos , Materiais Biomiméticos/química , Linhagem Celular , Colágeno/química , Fibroblastos , Humanos , Microscopia Eletrônica de Varredura , Nicho de Células-Tronco
8.
J Tissue Eng Regen Med ; 5(4): 292-300, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20687125

RESUMO

The 'biomimetic' approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD's inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 µm filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 °C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The 'cardiomimetic' approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages.


Assuntos
Reatores Biológicos , Valvas Cardíacas/fisiologia , Ventrículos do Coração/anatomia & histologia , Coração Auxiliar , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Animais , Complacência (Medida de Distensibilidade) , Valvas Cardíacas/citologia , Valvas Cardíacas/ultraestrutura , Pressão , Ratos , Reologia , Esterilização , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA