Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Endocrinology ; 164(11)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37768169

RESUMO

More adolescents are coming out as transgender each year and are put on puberty blockers to suppress natal puberty, which is then followed by cross-hormone treatment to achieve puberty of the desired gender. Studies to examine the effects of puberty suppression and virilizing therapy on future reproductive potential among transgender males are lacking. This study used a translational murine in vitro fertilization model to examine the effects of female puberty suppression with depot leuprolide acetate (LA), followed by virilizing therapy with testosterone cypionate (T), on embryologic and pregnancy outcomes. LA effectively inhibited puberty when mice were treated beginning at 3 weeks of age. LA treatment was associated with higher mouse weight but lower ovarian weight. LA-treated mice ovulated developmentally competent eggs in response to gonadotropin administration, albeit at a higher dose than controls. Ovaries from mice treated with LA and T produced oocytes that had morphologically normal meiotic spindles after in vitro maturation and responded to gonadotropin stimulation. Eggs from mice treated with LA and T were fertilizable and produced developmentally competent embryos that led to births of fertile pups. These results suggest that fertility may not be impaired after puberty suppression and cross-hormone therapy for transgender males.


Assuntos
Leuprolida , Maturidade Sexual , Masculino , Feminino , Camundongos , Animais , Leuprolida/farmacologia , Leuprolida/uso terapêutico , Testosterona/farmacologia , Gonadotropinas , Ovário , Hormônio Liberador de Gonadotropina
2.
Front Mol Neurosci ; 15: 1007026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340689

RESUMO

The natriuretic peptide receptors NPR1 and NPR2, also known as guanylyl cyclase A and guanylyl cyclase B, have critical functions in many signaling pathways, but much remains unknown about their localization and function in vivo. To facilitate studies of these proteins, we developed genetically modified mouse lines in which endogenous NPR1 and NPR2 were tagged with the HA epitope. To investigate the role of phosphorylation in regulating NPR1 and NPR2 guanylyl cyclase activity, we developed mouse lines in which regulatory serines and threonines were substituted with glutamates, to mimic the negative charge of the phosphorylated forms (NPR1-8E and NPR2-7E). Here we describe the generation and applications of these mice. We show that the HA-NPR1 and HA-NPR2 mice can be used to characterize the relative expression levels of these proteins in different tissues. We describe studies using the NPR2-7E mice that indicate that dephosphorylation of NPR2 transduces signaling pathways in ovary and bone, and studies using the NPR1-8E mice that indicate that the phosphorylation state of NPR1 is a regulator of heart, testis, and adrenal function.

3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638830

RESUMO

Pluripotent stem cells (PSCs) have been successfully developed in many species. However, the establishment of bovine-induced pluripotent stem cells (biPSCs) has been challenging. Here we report the generation of biPSCs from bovine mesenchymal stem cells (bMSCs) by overexpression of lysine-specific demethylase 4A (KDM4A) and the other reprogramming factors OCT4, SOX2, KLF4, cMYC, LIN28, and NANOG (KdOSKMLN). These biPSCs exhibited silenced transgene expression at passage 10, and had prolonged self-renewal capacity for over 70 passages. The biPSCs have flat, primed-like PSC colony morphology in combined media of knockout serum replacement (KSR) and mTeSR, but switched to dome-shaped, naïve-like PSC colony morphology in mTeSR medium and 2i/LIF with single cell colonization capacity. These cells have comparable proliferation rate to the reported primed- or naïve-state human PSCs, with three-germ layer differentiation capacity and normal karyotype. Transcriptome analysis revealed a high similarity of biPSCs to reported bovine embryonic stem cells (ESCs) and embryos. The naïve-like biPSCs can be incorporated into mouse embryos, with the extended capacity of integration into extra-embryonic tissues. Finally, at least 24.5% cloning efficiency could be obtained in nuclear transfer (NT) experiment using late passage biPSCs as nuclear donors. Our report represents a significant advance in the establishment of bovine PSCs.


Assuntos
Técnicas de Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição/biossíntese , Animais , Bovinos , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Células-Tronco Mesenquimais/citologia , Camundongos , Fatores de Transcrição/genética
4.
Elife ; 62017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29199951

RESUMO

Activating mutations in fibroblast growth factor (FGF) receptor 3 and inactivating mutations in the NPR2 guanylyl cyclase both cause severe short stature, but how these two signaling systems interact to regulate bone growth is poorly understood. Here, we show that bone elongation is increased when NPR2 cannot be dephosphorylated and thus produces more cyclic GMP. By developing an in vivo imaging system to measure cyclic GMP production in intact tibia, we show that FGF-induced dephosphorylation of NPR2 decreases its guanylyl cyclase activity in growth plate chondrocytes in living bone. The dephosphorylation requires a PPP-family phosphatase. Thus FGF signaling lowers cyclic GMP production in the growth plate, which counteracts bone elongation. These results define a new component of the signaling network by which activating mutations in the FGF receptor inhibit bone growth.


Assuntos
Desenvolvimento Ósseo , Fatores de Crescimento de Fibroblastos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores do Fator Natriurético Atrial/metabolismo , Animais , GMP Cíclico/metabolismo , Camundongos , Fosforilação , Transdução de Sinais
5.
Int J Oral Sci ; 7(2): 89-94, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25537657

RESUMO

Our previous studies have demonstrated that Fam20C promotes differentiation and mineralization of odontoblasts, ameloblasts, osteoblasts and osteocytes during tooth and bone development. Ablation of the Fam20C gene inhibits bone and tooth growth by increasing fibroblast growth factor 23 in serum and causing hypophosphatemia in conditional knockout mice. However, control and regulation of the expression of Fam20C are still unknown. In this study, we generated a transgenic reporter model which expresses green fluorescence protein (GFP) driven by the Fam20C promoter. Recombineering was used to insert a 16 kb fragment of the mouse Fam20C gene (containing the 15 kb promoter and 1.1 kb of exon 1) into a pBluescript SK vector with the topaz variant of GFP and a bovine growth hormone polyadenylation sequence. GFP expression was subsequently evaluated by histomorphometry on cryosections from E14 to adult mice. Fluorescence was evident in the bone and teeth as early as E17.5. The GFP signal was maintained stably in odontoblasts and osteoblasts until 4 weeks after birth. The expression of GFP was significantly reduced in teeth, alveolar bone and muscle by 8 weeks of age. We also observed colocalization of the GFP signal with the Fam20C antibody in postnatal 1- and 7-day-old animals. Successful generation of Fam20C-GFP transgenic mice will provide a unique model for studying Fam20C gene expression and the biological function of this gene during odontogenesis and osteogenesis.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular/genética , Odontogênese/genética , Osteogênese/genética , Animais , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA