Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Adv ; 159: 213819, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430724

RESUMO

Extracellular matrix (ECM) regulates cellular responses through mechanotransduction. The standard approach of in vitro culturing on plastic surfaces overlooks this phenomenon, so there is a need for biocompatible materials that exhibit adjustable mechanical and structural properties, promote cell adhesion and proliferation at low cost and for use in 2D or 3D cell cultures. This study presents a new tunable hydrogel system prepared from high-molecular hyaluronic acid (HA), Bovine serum albumin (BSA), and gelatin cross-linked using EDC/NHS. Hydrogels with Young's moduli (E) ranging from subunit to units of kilopascals were prepared by gradually increasing HA and BSA concentrations. Concentrated high-molecular HA network led to stiffer hydrogel with lower cluster size and swelling capacity. Medium and oxygen diffusion capability of all hydrogels showed they are suitable for 3D cell cultures. Mechanical and structural changes of mouse embryonic fibroblasts (MEFs) on hydrogels were compared with cells on standard cultivation surfaces. Experiments showed that hydrogels have suitable mechanical and cell adhesion capabilities, resulting in structural changes of actin filaments. Lastly, applying hydrogel for a more complex HL-1 cell line revealed improved mechanical and electrophysiological contractile properties.


Assuntos
Ácido Hialurônico , Hidrogéis , Animais , Camundongos , Hidrogéis/farmacologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Mecanotransdução Celular , Fibroblastos , Materiais Biocompatíveis
2.
Nanomaterials (Basel) ; 12(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35808019

RESUMO

One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 µg/mL and 20 ± 5, 15 + 5, 15 + 5 µg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.

3.
Anal Chim Acta ; 1216: 339959, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35691674

RESUMO

In the present work, we introduce a new cell-based biosensor for detecting arrhythmias based on a novel utilization of the combination of the Atomic Force Microscope (AFM) lateral force measurement as a nanosensor with a dual 3D cardiomyocyte syncytium. Two spontaneously coupled clusters of cardiomyocytes form this. The syncytium's functional contraction behavior was assessed using video sequences analyzed with Musclemotion ImageJ/Fiji software, and immunocytochemistry evaluated phenotype composition. The application of caffeine solution induced arrhythmia as a model drug, and its spontaneous resolution was monitored by AFM lateral force recording and interpretation and calcium fluorescence imaging as a reference method describing non-synchronized contractions of cardiomyocytes. The phenotypic analysis revealed the syncytium as a functional contractile and conduction cardiac behavior model. Calcium fluorescence imaging was used to validate that AFM fully enabled to discriminate cardiac arrhythmias in this in vitro cellular model. The described novel 3D hESCs-based cellular biosensor is suitable to detect arrhythmic events on the level of cardiac contractile and conduction tissue cellular model. The resulting biosensor allows for screening of arrhythmogenic properties of tailored drugs enabling its use in precision medicine.


Assuntos
Técnicas Biossensoriais , Células-Tronco Embrionárias Humanas , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/diagnóstico , Cálcio , Humanos , Miócitos Cardíacos
4.
Micron ; 155: 103199, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35140035

RESUMO

Atomic Force Microscopy (AFM) is a rather new method with increasing potential in analyzing various biosamples. Moreover, it can serve as a multi-functional device in the studies of biological specimens under physiological conditions. However, it is becoming increasingly popular among biochemists and biologists, it is not often used in cardiology. Heart disease causes millions of deaths every year. A common point in all heart diseases is the inferior function of cardiomyocytes, which are the contracting unit of the heart. Therefore, these cells are a frequent target of scientific studies. However, few of them use innovative techniques such as AFM and related methods or parallel combinations with complementary techniques such as cell potential measurements. The aim of this review is to illustrate the potential of AFM microscopy in the study of cardiac cells, comparing it with related methods and other techniques used to study the biomechanics and electrophysiology of this cell type. A better understanding of these methods may lead to a better description of the pathophysiology of the heart disease and an improved understanding of the effect of selected drugs.


Assuntos
Fenômenos Mecânicos , Miócitos Cardíacos , Fenômenos Biomecânicos , Microscopia de Força Atômica/métodos , Análise Espectral
5.
Front Pharmacol ; 12: 789730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111056

RESUMO

Cardiac side effects of some pulmonary drugs are observed in clinical practice. Aminophylline, a methylxanthine bronchodilator with documented proarrhythmic action, may serve as an example. Data on the action of aminophylline on cardiac cell electrophysiology and contractility are not available. Hence, this study was focused on the analysis of changes in the beat rate and contraction force of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and HL-1 cardiomyocytes in the presence of increasing concentrations of aminophylline (10 µM-10 mM in hPSC-CM and 8-512 µM in HL-1 cardiomyocytes). Basic biomedical parameters, namely, the beat rate (BR) and contraction force, were assessed in hPSC-CMs using an atomic force microscope (AFM). The beat rate changes under aminophylline were also examined on the HL-1 cardiac muscle cell line via a multielectrode array (MEA). Additionally, calcium imaging was used to evaluate the effect of aminophylline on intracellular Ca2+ dynamics in HL-1 cardiomyocytes. The BR was significantly increased after the application of aminophylline both in hPSC-CMs (with 10 mM aminophylline) and in HL-1 cardiomyocytes (with 256 and 512 µM aminophylline) in comparison with controls. A significant increase in the contraction force was also observed in hPSC-CMs with 10 µM aminophylline (a similar trend was visible at higher concentrations as well). We demonstrated that all aminophylline concentrations significantly increased the frequency of rhythm irregularities (extreme interbeat intervals) both in hPSC-CMs and HL-1 cells. The occurrence of the calcium sparks in HL-1 cardiomyocytes was significantly increased with the presence of 512 µM aminophylline. We conclude that the observed aberrant cardiomyocyte response to aminophylline suggests an arrhythmogenic potential of the drug. The acquired data represent a missing link between the arrhythmic events related to the aminophylline/theophylline treatment in clinical practice and describe cellular mechanisms of methylxanthine arrhythmogenesis. An AFM combined with hPSC-CMs may serve as a robust platform for direct drug effect screening.

6.
Pharmaceutics ; 12(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872234

RESUMO

Silver nanoparticles (AgNPs) have recently become very attractive for the scientific community due to their broad spectrum of applications in the biomedical field. The main advantages of AgNPs include a simple method of synthesis, a simple way to change their morphology and high surface area to volume ratio. Much research has been carried out over the years to evaluate their possible effectivity against microbial organisms. The most important factors which influence the effectivity of AgNPs against microorganisms are the method of their preparation and the type of application. When incorporated into fabric wound dressings and other textiles, AgNPs have shown significant antibacterial activity against both Gram-positive and Gram-negative bacteria and inhibited biofilm formation. In this review, the different routes of synthesizing AgNPs with controlled size and geometry including chemical, green, irradiation and thermal synthesis, as well as the different types of application of AgNPs for wound dressings such as membrane immobilization, topical application, preparation of nanofibers and hydrogels, and the mechanism behind their antimicrobial activity, have been discussed elaborately.

7.
World J Microbiol Biotechnol ; 35(12): 181, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728652

RESUMO

Root-associated fungi and bacteria play a pivotal role in the plant-soil ecosystem by influencing both plant growth and immunity. The aim of this study was to unravel the biodiversity of the bacterial and fungal rhizosphere (RS) and rhizoplane (RP) microbiota of Zhukovskij rannij potato (Solanum tuberosum L.) cultivar growing in the Alfisol of Tatarstan, Russia. To assess the structure and diversity of microbial communities, we employed the 16S rRNA and internal transcribed spacer gene library technique. Overall, sequence analysis showed the presence of 3982 bacterial and 188 fungal operational taxonomic units (OTUs) in the RP, and 6018 bacterial and 320 fungal OTUs for in the RS. Comparison between microbial community structures in the RS and RP showed significant differences between these compartments. Biodiversity was higher in the RS than in the RP. Although members of Proteobacteria (RS-59.1 ± 4.9%; RP-54.5 ± 9.2%), Bacteroidetes (RS-23.19 ± 10.2%; RP-34.52 ± 10.4%) and Actinobacteria (RS-11.55 ± 4.9%; RP-7.7 ± 5.1%) were the three most dominant phyla, accounting for 94-98% of all bacterial taxa in both compartments, notable variations were observed in the primary dominance of classes and genera in RS and RP samples. In addition, our results demonstrated that the potato rhizoplane was significantly enriched with the genera Flavobacterium, Pseudomonas, Acinetobacter and other potentially beneficial bacteria. The fungal community was predominantly inhabited by members of the Ascomycota phylum (RS-81.4 ± 8.1%; RP-81.7 ± 5.7%), among which the genera Fusarium (RS-10.34 ± 3.41%; RP-9.96 ± 4.79%), Monographella (RS-7.66 ± 4.43%; RP-9.91 ± 5.87%), Verticillium (RS-4.6 ± 1.43%; RP-8.27 ± 3.63%) and Chaetomium (RS-4.95 ± 2.07%; RP-8.33 ± 4.93%) were particularly abundant. Interestingly, potato rhizoplane was significantly enriched with potentially useful fungal genera, such as Mortierella and Metacordiceps. A comparative analysis revealed that the abundance of Fusarium (a cosmopolitan plant pathogen) varied significantly depending on rotation variants, indicating a possible control of phytopathogenic fungi via management-induced shifts through crop rotational methods. Analysis of the core microbiome of bacterial and fungal community structure showed that the formation of bacterial microbiota in the rhizosphere and rhizoplane is dependent on the host plant.


Assuntos
Bactérias/classificação , Biodiversidade , Fungos/classificação , Microbiota/fisiologia , Raízes de Plantas/microbiologia , Solo/química , Solanum tuberosum/microbiologia , Bactérias/genética , Fungos/genética , Microbiota/genética , Filogenia , Desenvolvimento Vegetal , RNA Ribossômico 16S/genética , Rizosfera , Federação Russa , Microbiologia do Solo , Solanum tuberosum/crescimento & desenvolvimento
8.
Data Brief ; 21: 2504-2509, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30761330

RESUMO

Here we present the morphological and physiological properties of isolated Lysinibacillus fusiformis strain GM, its draft genome sequence as well as annotation and analysis of its genome. Initial analysis of MALDI-TOF mass spectrometry, 16S rRNA gene analysis and in silico DNA-DNA hybridization revealed that the strain belongs to the species Lysinibacillus fusiformis. The 4,678,122 bp draft genome consist of 17 scaffolds encoding 4588 proteins and 137 RNAs. Annotation of the genome sequence revealed cellulase and protease encoding genes, genes of adhesion proteins and putative genes responsible for the biosynthesis of antimicrobial metabolites. The Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number NTMQ00000000.1 (https://www.ncbi.nlm.nih.gov/nuccore/NZ_NTMQ00000000.1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA