Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Digit Earth ; 10(10): 1017-1029, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-29098016

RESUMO

Large-scale gridded population datasets are usually produced for the year of input census data using a top-down approach and projected backward and forward in time using national growth rates. Such temporal projections do not include any subnational variation in population distribution trends and ignore changes in geographical covariates such as urban land cover changes. Improved predictions of population distribution changes over time require the use of a limited number of covariates that are time-invariant or temporally explicit. Here we make use of recently released multi-temporal high-resolution global settlement layers, historical census data and latest developments in population distribution modelling methods to reconstruct population distribution changes over 30 years across the Kenyan Coast. We explore the methodological challenges associated with the production of gridded population distribution time-series in data-scarce countries and show that trade-offs have to be found between spatial and temporal resolutions when selecting the best modelling approach. Strategies used to fill data gaps may vary according to the local context and the objective of the study. This work will hopefully serve as a benchmark for future developments of population distribution time-series that are increasingly required for population-at-risk estimations and spatial modelling in various fields.

2.
Malar J ; 16(1): 49, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28125996

RESUMO

BACKGROUND: Although malaria has been traditionally regarded as less of a problem in urban areas compared to neighbouring rural areas, the risk of malaria infection continues to exist in densely populated, urban areas of Africa. Despite the recognition that urbanization influences the epidemiology of malaria, there is little consensus on urbanization relevant for malaria parasite mapping. Previous studies examining the relationship between urbanization and malaria transmission have used products defining urbanization at global/continental scales developed in the early 2000s, that overestimate actual urban extents while the population estimates are over 15 years old and estimated at administrative unit level. METHODS AND RESULTS: This study sought to discriminate an urbanization definition that is most relevant for malaria parasite mapping using individual level malaria infection data obtained from nationally representative household-based surveys. Boosted regression tree (BRT) modelling was used to determine the effect of urbanization on malaria transmission and if this effect varied with urbanization definition. In addition, the most recent high resolution population distribution data was used to determine whether population density had significant effect on malaria parasite prevalence and if so, could population density replace urban classifications in modelling malaria transmission patterns. The risk of malaria infection was shown to decline from rural areas through peri-urban settlements to urban central areas. Population density was found to be an important predictor of malaria risk. The final boosted regression trees (BRT) model with urbanization and population density gave the best model fit (Tukey test p value <0.05) compared to the models with urbanization only. CONCLUSION: Given the challenges in uniformly classifying urban areas across different countries, population density provides a reliable metric to adjust for the patterns of malaria risk in densely populated urban areas. Future malaria risk models can, therefore, be improved by including both population density and urbanization which have both been shown to have significant impact on malaria risk in this study.


Assuntos
Malária Falciparum/epidemiologia , Plasmodium falciparum/fisiologia , Densidade Demográfica , Urbanização , África Subsaariana/epidemiologia , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Madagáscar/epidemiologia , Malária Falciparum/parasitologia , Masculino , Prevalência , Análise de Regressão
3.
Int J Health Geogr ; 15(1): 26, 2016 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-27473186

RESUMO

BACKGROUND: With more than half of Africa's population expected to live in urban settlements by 2030, the burden of malaria among urban populations in Africa continues to rise with an increasing number of people at risk of infection. However, malaria intervention across Africa remains focused on rural, highly endemic communities with far fewer strategic policy directions for the control of malaria in rapidly growing African urban settlements. The complex and heterogeneous nature of urban malaria requires a better understanding of the spatial and temporal patterns of urban malaria risk in order to design effective urban malaria control programs. In this study, we use remotely sensed variables and other environmental covariates to examine the predictability of intra-urban variations of malaria infection risk across the rapidly growing city of Dar es Salaam, Tanzania between 2006 and 2014. METHODS: High resolution SPOT satellite imagery was used to identify urban environmental factors associated malaria prevalence in Dar es Salaam. Supervised classification with a random forest classifier was used to develop high resolution land cover classes that were combined with malaria parasite prevalence data to identify environmental factors that influence localized heterogeneity of malaria transmission and develop a high resolution predictive malaria risk map of Dar es Salaam. RESULTS: Results indicate that the risk of malaria infection varied across the city. The risk of infection increased away from the city centre with lower parasite prevalence predicted in administrative units in the city centre compared to administrative units in the peri-urban suburbs. The variation in malaria risk within Dar es Salaam was shown to be influenced by varying environmental factors. Higher malaria risks were associated with proximity to dense vegetation, inland water and wet/swampy areas while lower risk of infection was predicted in densely built-up areas. CONCLUSIONS: The predictive maps produced can serve as valuable resources for municipal councils aiming to shrink the extents of malaria across cities, target resources for vector control or intensify mosquito and disease surveillance. The semi-automated modelling process developed can be replicated in other urban areas to identify factors that influence heterogeneity in malaria risk patterns and detect vulnerable zones. There is a definite need to expand research into the unique epidemiology of malaria transmission in urban areas for focal elimination and sustained control agendas.


Assuntos
Meio Ambiente , Mapeamento Geográfico , Imagens de Satélites/métodos , População Urbana , Animais , Anopheles/crescimento & desenvolvimento , Inteligência Artificial , Humanos , Insetos Vetores/crescimento & desenvolvimento , Larva , Malária/epidemiologia , Plasmodium falciparum/crescimento & desenvolvimento , Prevalência , Medição de Risco , Análise Espaço-Temporal , Tanzânia/epidemiologia
4.
Lancet ; 383(9930): 1739-47, 2014 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-24559537

RESUMO

BACKGROUND: Over a decade ago, the Roll Back Malaria Partnership was launched, and since then there has been unprecedented investment in malaria control. We examined the change in malaria transmission intensity during the period 2000-10 in Africa. METHODS: We assembled a geocoded and community Plasmodium falciparum parasite rate standardised to the age group 2-10 years (PfPR2-10) database from across 49 endemic countries and territories in Africa from surveys undertaken since 1980. The data were used within a Bayesian space-time geostatistical framework to predict PfPR2-10 in 2000 and 2010 at a 1 × 1 km spatial resolution. Population distribution maps at the same spatial resolution were used to compute populations at risk by endemicity class and estimate population-adjusted PfPR2-10 (PAPfPR2-10) for each of the 44 countries for which predictions were possible for each year. FINDINGS: Between 2000 and 2010, the population in hyperendemic (>50% to 75% PfPR2-10) or holoendemic (>75% PfPR2-10) areas decreased from 218·6 million (34·4%) of 635·7 million to 183·5 million (22·5%) of 815·7 million across 44 malaria-endemic countries. 280·1 million (34·3%) people lived in areas of mesoendemic transmission (>10% to 50% PfPR2-10) in 2010 compared with 178·6 million (28·1%) in 2000. Population in areas of unstable or very low transmission (<5% PfPR2-10) increased from 131·7 million people (20·7%) in 2000 to 219·0 million (26·8%) in 2010. An estimated 217·6 million people, or 26·7% of the 2010 population, lived in areas where transmission had reduced by at least one PfPR2-10 endemicity class. 40 countries showed a reduction in national mean PAPfPR2-10. Only ten countries contributed 87·1% of the population living in areas of hyperendemic or holoendemic transmission in 2010. INTERPRETATION: Substantial reductions in malaria transmission have been achieved in endemic countries in Africa over the period 2000-10. However, 57% of the population in 2010 continued to live in areas where transmission remains moderate to intense and global support to sustain and accelerate the reduction of transmission must remain a priority. FUNDING: Wellcome Trust.


Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , África/epidemiologia , Criança , Pré-Escolar , Bases de Dados Factuais , Doenças Endêmicas/prevenção & controle , Doenças Endêmicas/estatística & dados numéricos , Humanos , Malária Falciparum/prevenção & controle , Modelos Estatísticos , Prevalência , Medição de Risco/métodos , Análise Espacial , Fatores de Tempo
5.
PLoS One ; 8(4): e62214, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638008

RESUMO

INTRODUCTION: The last few years have witnessed rapid scaling-up of key malaria interventions in several African countries following increases in development assistance. However, there is only limited country-specific information on the health impact of expanded coverage of these interventions. METHODS: Paediatric admission data were assembled from 4 hospitals in Malawi reflecting different malaria ecologies. Trends in monthly clinical malaria admissions between January 2000 and December 2010 were analysed using time-series models controlling for covariates related to climate and service use to establish whether changes in admissions can be related to expanded coverage of interventions aimed at reducing malaria infection. RESULTS: In 3 of 4 sites there was an increase in clinical malaria admission rates. Results from time series models indicate a significant month-to-month increase in the mean clinical malaria admission rates at two hospitals (trend P<0.05). At these hospitals clinical malaria admissions had increased from 2000 by 41% to 100%. Comparison of changes in malaria risk and ITN coverage appear to correspond to a lack of disease declines over the period. Changes in intervention coverage within hospital catchments showed minimal increases in ITN coverage from <6% across all sites in 2000 to maximum of 33% at one hospital site by 2010. Additionally, malaria transmission intensity remained unchanged between 2000-2010 across all sites. DISCUSSION: Despite modest increases in coverage of measures to reduce infection there has been minimal changes in paediatric clinical malaria cases in four hospitals in Malawi. Studies across Africa are increasingly showing a mixed set of impact results and it is important to assemble more data from more sites to understand the wider implications of malaria funding investment. We also caution that impact surveillance should continue in areas where intervention coverage is increasing with time, for example Malawi, as decline may become evident within a period when coverage reaches optimal levels.


Assuntos
Hospitais/estatística & dados numéricos , Malária/epidemiologia , Admissão do Paciente/estatística & dados numéricos , Animais , Área Programática de Saúde , Criança , Clima , Doenças Endêmicas/prevenção & controle , Doenças Endêmicas/estatística & dados numéricos , Geografia , Humanos , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária/parasitologia , Malária/prevenção & controle , Malária/transmissão , Malaui/epidemiologia , Parasitos/fisiologia , Prevalência , Fatores de Tempo
6.
Parasit Vectors ; 5: 69, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22475528

RESUMO

BACKGROUND: Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach. METHODS: Here we describe the generation of a global map of the dominant vector species (DVS) of malaria that makes use of predicted distribution maps for individual species or species complexes. RESULTS: Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance. CONCLUSIONS: The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request) will be made directly available via the Malaria Atlas Project (MAP) website from early 2012.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Vetores de Doenças , Malária/transmissão , Filogeografia , África , Animais , Anopheles/parasitologia , Saúde Global , Humanos
7.
Adv Parasitol ; 78: 169-262, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22520443

RESUMO

Understanding the historical, temporal changes of malaria risk following control efforts in Africa provides a unique insight into what has been and might be archived towards a long-term ambition of elimination on the continent. Here, we use archived published and unpublished material combined with biological constraints on transmission accompanied by a narrative on malaria control to document the changing incidence of malaria in Africa since earliest reports pre-second World War. One result is a more informed mapped definition of the changing margins of transmission in 1939, 1959, 1979, 1999 and 2009.


Assuntos
Malária/epidemiologia , África/epidemiologia , Animais , Culicidae , Geografia , História do Século XX , História do Século XXI , Humanos , Incidência , Malária/história , Malária/parasitologia , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos , Plasmodium/fisiologia , Tempo (Meteorologia)
8.
PLoS One ; 6(9): e24524, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21935416

RESUMO

There has been considerable debate on the existence of trends in climate in the highlands of East Africa and hypotheses about their potential effect on the trends in malaria in the region. We apply a new robust trend test to mean temperature time series data from three editions of the University of East Anglia's Climatic Research Unit database (CRU TS) for several relevant locations. We find significant trends in the data extracted from newer editions of the database but not in the older version for periods ending in 1996. The trends in the newer data are even more significant when post-1996 data are added to the samples. We also test for trends in the data from the Kericho meteorological station prepared by Omumbo et al. We find no significant trend in the 1979-1995 period but a highly significant trend in the full 1979-2009 sample. However, although the malaria cases observed at Kericho, Kenya rose during a period of resurgent epidemics (1994-2002) they have since returned to a low level. A large assembly of parasite rate surveys from the region, stratified by altitude, show that this decrease in malaria prevalence is not limited to Kericho.


Assuntos
Malária/epidemiologia , Temperatura , África/epidemiologia , Humanos , Quênia/epidemiologia
9.
Parasit Vectors ; 4: 89, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21612587

RESUMO

BACKGROUND: The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. RESULTS: Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. CONCLUSIONS: This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Vetores de Doenças , Ecossistema , Geografia , Malária/epidemiologia , Animais , Ásia , Biodiversidade , Humanos , Ilhas do Pacífico
10.
BMC Infect Dis ; 11: 121, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21569328

RESUMO

BACKGROUND: Countries aiming for malaria elimination require a detailed understanding of the current intensity of malaria transmission within their national borders. National household sample surveys are now being used to define infection prevalence but these are less efficient in areas of exceptionally low endemicity. Here we present the results of a national malaria indicator survey in the Republic of Djibouti, the first in sub-Saharan Africa to combine parasitological and serological markers of malaria, to evaluate the extent of transmission in the country and explore the potential for elimination. METHODS: A national cross-sectional household survey was undertaken from December 2008 to January 2009. A finger prick blood sample was taken from randomly selected participants of all ages to examine for parasitaemia using rapid diagnostic tests (RDTs) and confirmed using Polymerase Chain Reaction (PCR). Blood spots were also collected on filter paper and subsequently used to evaluate the presence of serological markers (combined AMA-1 and MSP-119) of Plasmodium falciparum exposure. Multivariate regression analysis was used to determine the risk factors for P. falciparum infection and/or exposure. The Getis-Ord G-statistic was used to assess spatial heterogeneity of combined infections and serological markers. RESULTS: A total of 7151 individuals were tested using RDTs of which only 42 (0.5%) were positive for P. falciparum infections and confirmed by PCR. Filter paper blood spots were collected for 5605 individuals. Of these 4769 showed concordant optical density results and were retained in subsequent analysis. Overall P. falciparum sero-prevalence was 9.9% (517/4769) for all ages; 6.9% (46/649) in children under the age of five years; and 14.2% (76/510) in the oldest age group (≥50 years). The combined infection and/or antibody prevalence was 10.5% (550/4769) and varied from 8.1% to 14.1% but overall regional differences were not statistically significant (χ2=33.98, p=0.3144). Increasing age (p<0.001) and decreasing household wealth status (p<0.001) were significantly associated with increasing combined P. falciparum infection and/or antibody prevalence. Significant P. falciparum hot spots were observed in Dikhil region. CONCLUSION: Malaria transmission in the Republic of Djibouti is very low across all regions with evidence of micro-epidemiological heterogeneity and limited recent transmission. It would seem that the Republic of Djibouti has a biologically feasible set of pre-conditions for elimination, however, the operational feasibility and the potential risks to elimination posed by P. vivax and human population movement across the sub-region remain to be properly established.


Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Adolescente , Adulto , Anticorpos Antiprotozoários/imunologia , Criança , Pré-Escolar , Estudos Transversais , Djibuti/epidemiologia , Feminino , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Prevalência , Adulto Jovem
11.
Nat Commun ; 2: 266, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21468018

RESUMO

Blood group variants are characteristic of population groups, and can show conspicuous geographic patterns. Interest in the global prevalence of the Duffy blood group variants is multidisciplinary, but of particular importance to malariologists due to the resistance generally conferred by the Duffy-negative phenotype against Plasmodium vivax infection. Here we collate an extensive geo-database of surveys, forming the evidence-base for a multi-locus Bayesian geostatistical model to generate global frequency maps of the common Duffy alleles to refine the global cartography of the common Duffy variants. We show that the most prevalent allele globally was FY*A, while across sub-Saharan Africa the predominant allele was the silent FY*B(ES) variant, commonly reaching fixation across stretches of the continent. The maps presented not only represent the first spatially and genetically comprehensive description of variation at this locus, but also constitute an advance towards understanding the transmission patterns of the neglected P. vivax malaria parasite.


Assuntos
Sistema do Grupo Sanguíneo Duffy/genética , Malária Vivax/genética , Plasmodium vivax/fisiologia , África Subsaariana/epidemiologia , Alelos , Frequência do Gene , Humanos , Malária Vivax/sangue , Malária Vivax/epidemiologia
12.
Parasit Vectors ; 3: 117, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21129198

RESUMO

BACKGROUND: This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. RESULTS: A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method. CONCLUSIONS: The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern Region: An. (Anopheles) atroparvus, An. (Ano.) labranchiae, An. (Ano.) messeae, An. (Ano.) sacharovi, An. (Cel.) sergentii and An. (Cel.) superpictus*. These maps are presented alongside a bionomics summary for each species relevant to its control.

13.
Lancet ; 376(9752): 1579-91, 2010 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-21035838

RESUMO

Experience gained from the Global Malaria Eradication Program (1955-72) identified a set of shared technical and operational factors that enabled some countries to successfully eliminate malaria. Spatial data for these factors were assembled for all malaria-endemic countries and combined to provide an objective, relative ranking of countries by technical, operational, and combined elimination feasibility. The analysis was done separately for Plasmodium falciparum and Plasmodium vivax, and the limitations of the approach were discussed. The relative rankings suggested that malaria elimination would be most feasible in countries in the Americas and Asia, and least feasible in countries in central and west Africa. The results differed when feasibility was measured by technical or operational factors, highlighting the different types of challenge faced by each country. The results are not intended to be prescriptive, predictive, or to provide absolute assessments of feasibility, but they do show that spatial information is available to facilitate evidence-based assessments of the relative feasibility of malaria elimination by country that can be rapidly updated.


Assuntos
Doenças Endêmicas/prevenção & controle , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle , Estudos de Viabilidade , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Malária Vivax/epidemiologia , Malária Vivax/transmissão
14.
PLoS Negl Trop Dis ; 4(8): e774, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20689816

RESUMO

BACKGROUND: A research priority for Plasmodium vivax malaria is to improve our understanding of the spatial distribution of risk and its relationship with the burden of P. vivax disease in human populations. The aim of the research outlined in this article is to provide a contemporary evidence-based map of the global spatial extent of P. vivax malaria, together with estimates of the human population at risk (PAR) of any level of transmission in 2009. METHODOLOGY: The most recent P. vivax case-reporting data that could be obtained for all malaria endemic countries were used to classify risk into three classes: malaria free, unstable (<0.1 case per 1,000 people per annum (p.a.)) and stable (> or =0.1 case per 1,000 p.a.) P. vivax malaria transmission. Risk areas were further constrained using temperature and aridity data based upon their relationship with parasite and vector bionomics. Medical intelligence was used to refine the spatial extent of risk in specific areas where transmission was reported to be absent (e.g., large urban areas and malaria-free islands). The PAR under each level of transmission was then derived by combining the categorical risk map with a high resolution population surface adjusted to 2009. The exclusion of large Duffy negative populations in Africa from the PAR totals was achieved using independent modelling of the gene frequency of this genetic trait. It was estimated that 2.85 billion people were exposed to some risk of P. vivax transmission in 2009, with 57.1% of them living in areas of unstable transmission. The vast majority (2.59 billion, 91.0%) were located in Central and South East (CSE) Asia, whilst the remainder were located in America (0.16 billion, 5.5%) and in the Africa+ region (0.10 billion, 3.5%). Despite evidence of ubiquitous risk of P. vivax infection in Africa, the very high prevalence of Duffy negativity throughout Central and West Africa reduced the PAR estimates substantially. CONCLUSIONS: After more than a century of development and control, P. vivax remains more widely distributed than P. falciparum and is a potential cause of morbidity and mortality amongst the 2.85 billion people living at risk of infection, the majority of whom are in the tropical belt of CSE Asia. The probability of infection is reduced massively across Africa by the frequency of the Duffy negative trait, but transmission does occur on the continent and is a concern for Duffy positive locals and travellers. The final map provides the spatial limits on which the endemicity of P. vivax transmission can be mapped to support future cartographic-based burden estimations.


Assuntos
Geografia , Malária Vivax/epidemiologia , Malária Vivax/transmissão , População , Medição de Risco/métodos , África/epidemiologia , América/epidemiologia , Ásia/epidemiologia , Humanos
15.
Parasit Vectors ; 3: 72, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20712879

RESUMO

BACKGROUND: An increasing knowledge of the global risk of malaria shows that the nations of the Americas have the lowest levels of Plasmodium falciparum and P. vivax endemicity worldwide, sustained, in part, by substantive integrated vector control. To help maintain and better target these efforts, knowledge of the contemporary distribution of each of the dominant vector species (DVS) of human malaria is needed, alongside a comprehensive understanding of the ecology and behaviour of each species. RESULTS: A database of contemporary occurrence data for 41 of the DVS of human malaria was compiled from intensive searches of the formal and informal literature. The results for the nine DVS of the Americas are described in detail here. Nearly 6000 occurrence records were gathered from 25 countries in the region and were complemented by a synthesis of published expert opinion range maps, refined further by a technical advisory group of medical entomologists. A suite of environmental and climate variables of suspected relevance to anopheline ecology were also compiled from open access sources. These three sets of data were then combined to produce predictive species range maps using the Boosted Regression Tree method. The predicted geographic extent for each of the following species (or species complex*) are provided: Anopheles (Nyssorhynchus) albimanus Wiedemann, 1820, An. (Nys.) albitarsis*, An. (Nys.) aquasalis Curry, 1932, An. (Nys.) darlingi Root, 1926, An. (Anopheles) freeborni Aitken, 1939, An. (Nys.) marajoara Galvão & Damasceno, 1942, An. (Nys.) nuneztovari*, An. (Ano.) pseudopunctipennis* and An. (Ano.) quadrimaculatus Say, 1824. A bionomics review summarising ecology and behaviour relevant to the control of each of these species was also compiled. CONCLUSIONS: The distribution maps and bionomics review should both be considered as a starting point in an ongoing process of (i) describing the distributions of these DVS (since the opportunistic sample of occurrence data assembled can be substantially improved) and (ii) documenting their contemporary bionomics (since intervention and control pressures can act to modify behavioural traits). This is the first in a series of three articles describing the distribution of the 41 global DVS worldwide. The remaining two publications will describe those vectors found in (i) Africa, Europe and the Middle East and (ii) in Asia. All geographic distribution maps are being made available in the public domain according to the open access principles of the Malaria Atlas Project.

17.
PLoS Med ; 6(3): e1000048, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19323591

RESUMO

BACKGROUND: Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. METHODS AND FINDINGS: A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 < or = 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2-10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2-10 > or = 40%) areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk. CONCLUSIONS: High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are found in the Americas. Low endemicity is also widespread in CSE Asia, but pockets of intermediate and very rarely high transmission remain. There are therefore significant opportunities for malaria control in Africa and for malaria elimination elsewhere. This 2007 global P. falciparum malaria endemicity map is the first of a series with which it will be possible to monitor and evaluate the progress of this intervention process.


Assuntos
Doenças Endêmicas/estatística & dados numéricos , Malária Falciparum/epidemiologia , Mapas como Assunto , África/epidemiologia , América/epidemiologia , Animais , Ásia/epidemiologia , Clima , Bases de Dados Factuais , Saúde Global , Inquéritos Epidemiológicos , Humanos , Malária Falciparum/parasitologia , Modelos Teóricos , Plasmodium falciparum/isolamento & purificação , Prevalência , Risco
18.
Malar J ; 7: 218, 2008 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-18954430

RESUMO

BACKGROUND: The efficient allocation of financial resources for malaria control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of malaria risk and of the human populations it affects. Low population densities in rural areas and high population densities in urban areas can influence malaria transmission substantially. Here, the Malaria Atlas Project (MAP) global database of Plasmodium falciparum parasite rate (PfPR) surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining malaria risk maps with those of human population distribution in order to define populations at risk more accurately. METHODS: First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as malaria free regions. Second, the potential of international travel and health guidelines (ITHGs) for identifying malaria free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. RESULTS: Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 malaria free urban areas within endemic countries. Comparison of PfPR survey results showed significant differences between author-defined 'urban' and 'rural' designations in Africa, but not for the remainder of the malaria endemic world. The Global Rural Urban Mapping Project (GRUMP) urban extent mask proved most accurate for mapping these author-defined rural and urban locations, and further sub-divisions of urban extents into urban and peri-urban classes enabled the effects of high population densities on malaria transmission to be mapped and quantified. CONCLUSION: The availability of detailed, contemporary census and urban extent data for the construction of coherent and accurate global spatial population databases is often poor. These known sources of uncertainty in population surfaces and urban maps have the potential to be incorporated into future malaria burden estimates. Currently, insufficient spatial information exists globally to identify areas accurately where population density is low enough to impact upon transmission. Medical intelligence does however exist to reliably identify malaria free cities. Moreover, in Africa, urban areas that have a significant effect on malaria transmission can be mapped.


Assuntos
Doenças Endêmicas/estatística & dados numéricos , Saúde Global , Malária Falciparum/epidemiologia , Densidade Demográfica , População Urbana , África/epidemiologia , Humanos , Malária Falciparum/transmissão , Mapas como Assunto , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA