Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 10: e13510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651744

RESUMO

The use of camera traps (CTs) has become an increasingly popular method of studying wildlife, as CTs are able to detect rare, nocturnal, and elusive species in remote and difficult-to-access areas. It thus makes them suited to estimate animal density and abundance, identify activity patterns and new behaviours of animals. However, animals can react when they see the CTs and this can lead to bias in the animal population estimates. While CTs may provide many advantages, an improved understanding of their impacts on individual's behaviour is necessary to avoid erroneous density estimates. Yet, the impact of CTs on detected individuals, such as human odour near the device and the environment, or the infrared illumination, has received relatively little attention. To date, there is no clear procedure to remove this potential bias. Here, we use camera trap distance sampling (CTDS) to (1) quantify the bias resulting from the different animal responses to the CTs when determining animal density and abundance, and (2) test if olfactory, visual and auditory signals have an influence on the animals' reaction to CTs. Between March 2019 and March 2020, we deployed CTs at 267 locations distributed systematically over the entire Taï National Park. We obtained 58,947 videos from which we analysed four medium- to-large-bodied species (Maxwell's duiker (Philantomba maxwellii), Jentink's duiker (Cephalophus jentinki), pygmy hippopotamus (Choeropsis liberiensis) and Western chimpanzee (Pan troglodytes verus)) displaying different behaviours towards the CTs. We then established species-specific ethograms describing the behavioural responses to the CTs. Using these species-specific responses, we observed that the Maxwell's duiker reacted weakly to CTs (about 0.11% of the distance data), contrary to Jentink's duiker, pygmy hippopotamus and Western chimpanzee which reacted with relatively high frequencies, representing 32.82%, 52.96% and 16.14% of the distance data, respectively. Not taking into account the species-specific responses to the CTs can lead to an artificial doubling or tripling of the populations' sizes. All species reacted more to the CTs at close distances. Besides, the Jentink's duiker and the pygmy hippopotamus reacted significantly more to the CTs at night than during the day. Finally, as for olfactory signals, the probability of reaction to the CTs during the first days after CTs installation was weak in Maxwell's duiker, but concerned 18% of the video captures in Western chimpanzees which decreasing with time, but they remained high in pygmy hippopotamus and Jentink's duiker (65% and 70% of the video captures respectively). Careful consideration should be given to animal's response to CTs during the analysis and in the field, by reducing human's impact around the CTs installation.


Assuntos
Antílopes , Pan troglodytes , Humanos , Animais , Pan troglodytes/fisiologia , Côte d'Ivoire , Parques Recreativos , Densidade Demográfica
2.
Curr Biol ; 29(7): 1211-1217.e3, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30880013

RESUMO

Temperament and personality research in humans and nonhuman animals measures behavioral variation in individual, population, or species-specific traits with implications for survival and fitness, such as social status, foraging, and mating success [1-5]. Curiosity and risk-taking tendencies have been studied extensively across taxa by measuring boldness and exploration responses to experimental novelty exposure [3, 4, 6-15]. Here, we conduct a natural field experiment using wildlife monitoring technology to test variation in the reaction of wild great apes (43 groups of naive chimpanzees, bonobos, and western gorillas across 14 field sites in Africa) to a novel object, the camera trap. Bonobo and gorilla groups demonstrated a stronger looking impulse toward the camera trap device compared to chimpanzees, suggesting higher visual attention and curiosity. Bonobos were also more likely to show alarm and other fearful behaviors, although such neophobic (and conversely, neophilic) responses were generally rare. Among all three species, individuals looked at cameras longer when they were young, were associating with fewer individuals, and did not live near a long-term research site. Overall, these findings partially validate results from great ape novelty paradigms in captivity [7, 8]. We further suggest that species-typical leadership styles [16] and social and environmental effects, including familiarity with humans, best explain novelty responses of wild great apes. In sum, this study illustrates the feasibility of large-scale field experiments and the importance of both intrinsic and extrinsic factors in shaping animal curiosity. VIDEO ABSTRACT.


Assuntos
Comportamento Exploratório , Gorilla gorilla/psicologia , Pan paniscus/psicologia , Pan troglodytes/psicologia , Fotografação/instrumentação , África , Animais , Feminino , Masculino , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA