Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 94(3-1): 032505, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739853

RESUMO

Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. We investigate the role of fluctuation-based or thermal Casimir interactions between cross linkers in a semiflexible network. One finds that, by integrating out the polymer degrees of freedom, there is an attractive logarithmic potential between nearest-neighbor cross linkers in a bundle, with a significantly weaker next-nearest-neighbor interaction. Here we show that a one-dimensional gas of these strongly interacting linkers in equilibrium with a source of unbound ones admits a discontinuous phase transition between a sparsely and a densely bound bundle. This discontinuous transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. We support these calculations with the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross linkers.

2.
Phys Rev E ; 93(3): 032613, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078420

RESUMO

We report on the collapse of bubble rafts under compression in a closed rectangular geometry. A bubble raft is a single layer of bubbles at the air-water interface. A collapse event occurs when bubbles submerge beneath the neighboring bubbles under compression, causing the structure of the bubble raft to go from single-layer to multilayer. We studied the collapse dynamics as a function of compression velocity. At higher compression velocity we observe a more uniform distribution of collapse events, whereas at lower compression velocities the collapse events accumulate at the system boundaries. We propose that this system can be understood in terms of a linear elastic sheet coupled to a local internal (Ising) degree of freedom. The two internal states, which represent one bubble layer versus two, couple to the elasticity of the sheet by locally changing the reference state of the material. By exploring the collapse dynamics of the bubble raft, one may address the basic nonlinear mechanics of a number of complex systems in which elastic stress is coupled to local internal variables.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA