Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1861(1): 110-122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463694

RESUMO

Perfringolysin O (PFO) is a toxic protein that forms ß-barrel transmembrane pores upon binding to cholesterol-containing membranes. The formation of lytic pores requires conformational changes in PFO that lead to the conversion of water-soluble monomers into membrane-bound oligomers. Although the general outline of stepwise pore formation has been established, the underlying mechanistic details await clarification. To extend our understanding of the molecular mechanisms that control the pore formation, we compared the hydrogen-deuterium exchange patterns of PFO with its derivatives bearing mutations in the D3 domain. In the case of two of these mutations F318A, Y181A, known from previous work to lead to a decreased lytic activity, global destabilization of all protein domains was observed in their water-soluble forms. This was accompanied by local changes in D3 ß-sheet, including unexpected stabilization of functionally important ß1 strand in Y181A. In case of the double mutation (F318A/Y181A) that completely abolished the lytic activity, several local changes were retained, but the global destabilization effects of single mutations were reverted and hydrogen-deuterium exchange (HDX) pattern returned to PFO level. Strong structural perturbations were not observed in case of remaining variants in which other residues of the hydrophobic core of D3 domain were substituted by alanine. Our results indicate the existence in PFO of a well-tuned H-bonding network that maintains the stability of the D3 ß-strands at appropriate level at each transformation step. F318 and Y181 moieties participate in this network and their role extends beyond their direct intermolecular interaction during oligomerization that was identified previously.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Colesterol/química , Clostridium perfringens/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Sequência de Aminoácidos , Deutério/química , Hidrogênio/química , Ligação de Hidrogênio , Lipossomos/química , Mutação , Ligação Proteica , Conformação Proteica em Folha beta , Domínios Proteicos , Solubilidade , Ressonância de Plasmônio de Superfície , Termodinâmica , Água/química
2.
Biochim Biophys Acta Biomembr ; 1859(6): 1075-1088, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28263714

RESUMO

Perfringolysin O (PFO) belongs to the family of cholesterol-dependent cytolysins. Upon binding to a cholesterol-containing membrane, PFO undergoes a series of structural changes that result in the formation of a ß-barrel pore and cell lysis. Recognition and binding to cholesterol are mediated by the D4 domain, one of four domains of PFO. The D4 domain contains a conserved tryptophan-rich loop named undecapeptide (E458CTGLAWEWWR468) in which arginine 468 is essential for retaining allosteric coupling between D4 and other domains during interaction of PFO with the membrane. In this report we studied the impact of R468A mutation on the whole protein structure using hydrogen-deuterium exchange coupled with mass spectrometry. We found that in aqueous solution, compared to wild type (PFO), PFOR468A showed increased deuterium uptake due to exposure of internal toxin regions to the solvent. This change reflected an overall structural destabilization of PFOR468A in solution. Conversely, upon binding to cholesterol-containing membranes, PFOR468A revealed a profound decrease of hydrogen-deuterium exchange when compared to PFO. This block of deuterium uptake resulted from PFOR468A-induced aggregation and fusion of liposomes, as found by dynamic light scattering, microscopic observations and FRET measurements. In the result of liposome aggregation and fusion, the entire PFOR468A molecule became shielded from aqueous solution and thereby was protected against proteolytic digestion and deuteration. We have established that structural changes induced by the R468A mutation lead to exposure of an additional cholesterol-independent liposome-binding site in PFO that confers its fusogenic property, altering the mode of the toxin action.


Assuntos
Toxinas Bacterianas/química , Clostridium perfringens/química , Proteínas Hemolisinas/química , Lipossomos/química , Fusão de Membrana , Proteínas Recombinantes de Fusão/química , Lipossomas Unilamelares/química , Sequência de Aminoácidos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Clonagem Molecular , Clostridium perfringens/patogenicidade , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Cinética , Lipossomos/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Lipossomas Unilamelares/metabolismo
3.
J Biol Chem ; 289(41): 28738-52, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25164812

RESUMO

Perfringolysin O (PFO) is a toxic protein that binds to cholesterol-containing membranes, oligomerizes, and forms a ß-barrel transmembrane pore, leading to cell lysis. Previous studies have uncovered the sequence of events in this multistage structural transition to a considerable detail, but the underlying molecular mechanisms are not yet fully understood. By measuring hydrogen-deuterium exchange patterns of peptide bond amide protons monitored by mass spectrometry (MS), we have mapped structural changes in PFO and its variant bearing a point mutation during incorporation to the lipid environment. We have defined all regions that undergo structural changes caused by the interaction with the lipid environment both in wild-type PFO, thus providing new experimental constraints for molecular modeling of the pore formation process, and in a point mutant, W165T, for which the pore formation process is known to be inefficient. We have demonstrated that point mutation W165T causes destabilization of protein solution structure, strongest for domain D1, which interrupts the pathway of structural transitions in other domains necessary for proper oligomerization in the membrane. In PFO, the strongest changes accompanying binding to the membrane focus in D1; the C-terminal part of D4; and strands ß1, ß4, and ß5 of D3. These changes were much weaker for PFO(W165T) lipo where substantial stabilization was observed only in D4 domain. In this study, the application of hydrogen-deuterium exchange analysis monitored by MS provided new insight into conformational changes of PFO associated with the membrane binding, oligomerization, and lytic pore formation.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Mutação Puntual , Lipossomas Unilamelares/química , Sequência de Aminoácidos , Toxinas Bacterianas/metabolismo , Colesterol/química , Clostridium perfringens/química , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas Hemolisinas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosfatidilcolinas/química , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esfingomielinas/química , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA