Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Langmuir ; 39(5): 1947-1956, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36701794

RESUMO

The synthesis of FeCo alloys as highly magnetic nanoparticles has been valuable, as far as applications for magnetic nanoparticles are concerned. However, recently, a field of magnetoplasmonics in which magnetic nanoparticles such as the FeCo alloys doped with plasmonic materials such as Au and Ag to create a hybrid nanostructure with both properties has emerged. These magnetoplasmonic metamaterials have greatly enhanced the limit of detection of analytes in spectroscopic methods, as well as providing a more widely applicable nanoparticle to broaden the use of FeCo alloys even further. Herein, we discuss the synthesis of high-yield and fairly monodisperse spherical FeCo and Au-doped FeCo (Au@FeCo) with varying compositions of Au synthesized via the thermal decomposition of iron pentacarbonyl (Fe(CO)5) and dicobalt octacarbonyl (Co2(CO)8), followed by the addition of Au atoms using triphenylphosphine gold(I) chloride ((Ph3P)AuCl) via both coprecipitation and by delayed addition methods. The products were separated using a hand-held magnet, and then characterized via ultraviolet-visible light (UV-vis), scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), flame atomic absorption spectrometry (F-AAS), and magnetization measurements. Optical studies revealed a plasmonic peak at 550 nm in the Au@FeCo nanoparticles that had a gold content (%Au) of >2% (by weight), determined using F-AAS. Colocation of the Fe, Co, and Au were demonstrated through EDX analysis. Location of the Au atoms in the core were seen through high-resolution bright-field imaging. To understand the use of these nanoparticles for potential application in therapeutics and/or electronics, resistance measurements were performed to assess power loss as a function of frequency. We also achieved magnetization values as high as 150 emu/g and as low as 50 emu/g for gold-loaded samples based on %Au by weight. This paves the way to continue to develop magneto-plasmonic structures chemically using these synthesis strategies.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36234450

RESUMO

As a typical representative of endocrine-disrupting chemicals (EDCs), bisphenol A (BPA) is a common persistent organic pollutant in the environment that can induce various diseases even at low concentrations. Herein, the magnetic Fe3O4-Au@Ag@(Au@Ag) nanocomposites (CSSN NCs) have been prepared by self-assembly method and applied for ultra-sensitive surface-enhanced resonance Raman scattering (SERRS) detection of BPA. A simple and rapid coupling reaction of Pauly's reagents and BPA not only solved the problem of poor affinity between BPA and noble metals, but also provided the SERRS activity of BPA azo products. The distribution of hot spots and the influence of incremental introduction of noble metals on the performance of SERRS were analyzed by a finite-difference time-domain (FDTD) algorithm. The abundance of hot spots generated by core-shell-satellite structure and outstanding SERRS performance of Au@Ag nanocrystals were responsible for excellent SERRS sensitivity of CSSN NCs in the results. The limit of detection (LOD) of CSSN NCs for BPA azo products was as low as 10-10 M. In addition, the saturation magnetization (Ms) value of CSSN NCs was 53.6 emu·g-1, which could be rapidly enriched and collected under the condition of external magnetic field. These magnetic core-shell-satellite NCs provide inspiration idea for the tailored design of ultra-sensitive SERRS substrates, and thus exhibit limitless application prospects in terms of pollutant detection, environmental monitoring, and food safety.

3.
Microsyst Nanoeng ; 7: 23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567737

RESUMO

Ternary noble metal-semiconductor nanocomposites (NCs) with core-shell-satellite nanostructures have received widespread attention due to their outstanding performance in detecting pollutants through surface-enhanced Raman scattering (SERS) and photodegradation of organic pollutants. In this work, ternary Au@Cu2O-Ag NCs were designed and prepared by a galvanic replacement method. The effect of different amounts of Ag nanocrystals adsorbed on the surfaces of Au@Cu2O on the SERS activity was investigated based on the SERS detection of 4-mercaptobenzoic acid (4-MBA) reporter molecules. Based on electromagnetic field simulations and photoluminescence (PL) results, a possible SERS enhancement mechanism was proposed and discussed. Moreover, Au@Cu2O-Ag NCs served as SERS substrates, and highly sensitive SERS detection of malachite green (MG) with a detection limit as low as 10-9 M was achieved. In addition, Au@Cu2O-Ag NCs were recycled due to their superior self-cleaning ability and could catalyze the degradation of MG driven by visible light. This work demonstrates a wide range of possibilities for the integration of recyclable SERS detection and photodegradation of organic dyes and promotes the development of green testing techniques.

4.
Langmuir ; 34(15): 4427-4436, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29577731

RESUMO

Cellulose nanocrystals (CNCs) can be attractive templates for the generation of functional inorganic/organic nanoparticles, given their fine sizes, aspect ratios, and sustainable worldwide availability in abundant quantities. Here, we present for the first time a scalable, surfactant-free, tailorable wet chemical process for converting commercially available CNCs into individual aspected gold nanoshell-bearing particles with tunable surface plasmon resonance bands. Using a rational cellulose functionalization approach, stable suspensions of positively charged CNCs have been generated. Continuous, conductive, nanocrystalline gold coatings were then applied to the individual, electrostatically stabilized CNCs via decoration with 1-3 nm diameter gold particles followed by electroless gold deposition. Optical analyses indicated that these core-shell nanoparticles exhibited two surface plasmon absorbance bands, with one located in the visible range (near 550 nm) and the other at near infrared (NIR) wavelengths. The NIR band possessed a peak maximum wavelength that could be tuned over a wide range (1000-1300 nm) by adjusting the gold coating thickness. The bandwidth and wavelength of the peak maximum of the NIR band were also sensitive to the particle size distribution and could be further refined by fractionation using viscosity gradient centrifugation.


Assuntos
Celulose , Ouro , Nanopartículas Metálicas/química , Nanoconchas , Ressonância de Plasmônio de Superfície , Tamanho da Partícula
5.
Adv Mater ; 30(3)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29194793

RESUMO

Methods for generating nanopores in substrates typically involve one or more wet-etching steps. Here a fundamentally different approach to produce nanopores in sheet substrates under dry, ambient conditions, using nanosecond-pulsed laser irradiation and magnetic gold nanoclusters (MGNCs) as the etching agents is described. Thermoplastic films (50-75 µm thickness) are coated with MGNCs then exposed to laser pulses with a coaxial magnetic field gradient, resulting in high-aspect ratio channels with tapered cross sections as characterized by confocal fluorescence tomography. The dry-etching process is applicable to a wide variety of substrates ranging from fluoropolymers to borosilicate glass, with etch rates in excess of 1 µm s-1 . Finite-element modeling suggests that the absorption of laser pulses by MGNCs can produce temperature spikes of nearly 1000 °C, which is sufficient for generating photoacoustic responses that can drive particles into the medium, guided by magnetomotive force.

6.
Sci Technol Adv Mater ; 18(1): 210-218, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458743

RESUMO

Au-FexOy composite nanoparticles (NPs) are of great technological interest due to their combined optical and magnetic properties. However, typical syntheses are neither simple nor ecologically friendly, creating a challenging situation for process scale-up. Here we describe conditions for preparing Au-FexOy NPs in aqueous solutions and at ambient temperatures, without resorting to solvents or amphiphilic surfactants with poor sustainability profiles. These magnetic gold nanoclusters (MGNCs) are prepared in practical yields with average sizes slightly below 100 nm, and surface plasmon resonances that extend to near-infrared wavelengths, and sufficient magnetic moment (up to 6 emu g-1) to permit collection within minutes by handheld magnets. The MGNCs also produce significant photoluminescence when excited at 488 nm. Energy dispersive X-ray (EDX) analysis indicates a relatively even distribution of Fe within the MGNCs, as opposed to a central magnetic core.

7.
Biomaterials ; 101: 285-95, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27310916

RESUMO

Nanoparticle (NP)-based approaches to cancer drug delivery are challenged by the heterogeneity of the enhanced permeability and retention (EPR) effect in tumors and the premature attrition of payload from drug carriers during circulation. Here we show that such challenges can be overcome by a magnetophoretic approach to accelerate NP delivery to tumors. Payload-bearing poly(lactic-co-glycolic acid) NPs were converted into polymer-iron-oxide nanocomposites (PINCs) by attaching colloidal Fe3O4 onto the surface, via a simple surface modification method using dopamine polymerization. PINCs formed stable dispersions in serum-supplemented medium and responded quickly to magnetic field gradients above 1 kG/cm. Under the field gradients, PINCs were rapidly transported across physical barriers and into cells and captured under flow conditions similar to those encountered in postcapillary venules, increasing the local concentration by nearly three orders of magnitude. In vivo magnetophoretic delivery enabled PINCs to accumulate in poorly vascularized subcutaneous SKOV3 xenografts that did not support the EPR effect. In vivo magnetic resonance imaging, ex vivo fluorescence imaging, and tissue histology all confirmed that the uptake of PINCs was higher in tumors exposed to magnetic field gradients, relative to negative controls.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Óxido Ferroso-Férrico/química , Indóis/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Polímeros/química , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/farmacocinética , Óxido Ferroso-Férrico/farmacocinética , Humanos , Indóis/farmacocinética , Ácido Láctico/farmacocinética , Imageamento por Ressonância Magnética , Magnetismo/métodos , Camundongos , Células NIH 3T3 , Nanopartículas/ultraestrutura , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imagem Óptica , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/farmacocinética
8.
J Am Chem Soc ; 137(40): 12772-12775, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26425924

RESUMO

Our understanding of the complex cell entry pathways would greatly benefit from a comprehensive characterization of key proteins involved in this dynamic process. Here we devise a novel proteomic strategy named TITAN (Tracing Internalization and TrAfficking of Nanomaterials) to reveal real-time protein-dendrimer interactions using a systems biology approach. Dendrimers functionalized with photoreactive cross-linkers were internalized by HeLa cells and irradiated at set time intervals, then isolated and subjected to quantitative proteomics. In total, 809 interacting proteins cross-linked with dendrimers were determined by TITAN in a detailed temporal manner during dendrimer internalization, traceable to at least two major endocytic mechanisms, clathrin-mediated and caveolar/raft-mediated endocytosis. The direct involvement of the two pathways was further established by the inhibitory effect of dynasore on dendrimer uptake and changes in temporal profiles of key proteins.


Assuntos
Dendrímeros/metabolismo , Proteômica , Transporte Biológico , Células HeLa , Humanos
9.
Nanoscale ; 7(25): 10931-5, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26060841

RESUMO

Magnetic gold nanoclusters (MGNCs) functionalized with 4-dimethylaminopyridine (DMAP) enables the trace detection of tetrabromobisphenol A (TBBPA), an environmental pollutant, using surface-enhanced Raman scattering (SERS) spectroscopy. The synthesis, cleansing, and functionalization of MGNCs are conducted in aqueous solutions; SERS samples are prepared by magnetic precipitation in the presence of trace analyte. The limit of detection (LOD) for TBBPA is greatly increased by the use of DMAP as a reporter molecule: DMAP-modified MGNCs can detect TBBPA at 10 pM in water, whereas the LOD for TBBPA by unfunctionalized Au is 1 nM. The reproducibility of picomolar TBBPA detection with DMAP-modified MGNCs is confirmed by two-dimensional correlation analysis. The high SERS sensitivity for TBBPA can be attributed to its capacity to modulate the Raman spectrum of adsorbed DMAP. This indirect mode of detection can also be applied toward the detection of other hydrophobic analytes, each identifiable by its characteristic SERS identity.


Assuntos
4-Aminopiridina/análogos & derivados , Ouro/química , Nanopartículas de Magnetita/química , Bifenil Polibromatos/análise , 4-Aminopiridina/química , Limite de Detecção , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA