Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38671760

RESUMO

Artificial intelligence (AI), particularly deep learning, has made enormous strides in medical imaging analysis. In the field of musculoskeletal radiology, deep-learning models are actively being developed for the identification and evaluation of bone fractures. These methods provide numerous benefits to radiologists such as increased diagnostic accuracy and efficiency while also achieving standalone performances comparable or superior to clinician readers. Various algorithms are already commercially available for integration into clinical workflows, with the potential to improve healthcare delivery and shape the future practice of radiology. In this systematic review, we explore the performance of current AI methods in the identification and evaluation of fractures, particularly those in the ankle, wrist, hip, and ribs. We also discuss current commercially available products for fracture detection and provide an overview of the current limitations of this technology and future directions of the field.

2.
Adv Pharmacol ; 97: 229-255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37236760

RESUMO

Vascular function is dynamically regulated and dependent on a bevy of cell types and factors that work in concert across the vasculature. The vasoactive eicosanoid, 20-Hydroxyeicosatetraenoic acid (20-HETE) is a key player in this system influencing the sensitivity of the vasculature to constrictor stimuli, regulating endothelial function, and influencing the renin angiotensin system (RAS), as well as being a driver of vascular remodeling independent of blood pressure elevations. Several of these bioactions are accomplished through the ligand-receptor pairing between 20-HETE and its high-affinity receptor, GPR75. This 20-HETE axis is at the root of various vascular pathologies and processes including ischemia induced angiogenesis, arteriogenesis, septic shock, hypertension, atherosclerosis, myocardial infarction and cardiometabolic diseases including diabetes and insulin resistance. Pharmacologically, several preclinical tools have been developed to disrupt the 20-HETE axis including 20-HETE synthesis inhibitors (DDMS and HET0016), synthetic 20-HETE agonist analogues (20-5,14-HEDE and 20-5,14-HEDGE) and 20-HETE receptor blockers (AAA and 20-SOLA). Systemic or cell-specific therapeutic targeting of the 20-HETE-GPR75 axis continues to be an invaluable approach as studies examine the molecular underpinnings activated by 20-HETE under various physiological settings. In particular, the development and characterization of 20-HETE receptor blockers look to be a promising new class of compounds that can provide a considerable benefit to patients suffering from these cardiovascular pathologies.


Assuntos
Hipertensão , Sistema Renina-Angiotensina , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Hipertensão/metabolismo , Remodelação Vascular , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA