Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Front Pharmacol ; 15: 1373182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562458

RESUMO

Macrophages contribute to adipose tissue homeostasis; however, they are also thought to be responsible for insulin resistance in obesity. Macrophages, which were oversimplified in past methodologies, have become rather difficult to understand comprehensively as recent developments in research methodology have revealed their diversity. This review highlights recent studies on adipose tissue macrophages, identifies controversial issues that need to be resolved and proposes a scenario for further development of adipose tissue macrophage biology.

2.
Cureus ; 16(1): e52223, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38347980

RESUMO

Diabetic striatopathy is a rare condition with a prevalence of less than one in 100,000. Herein, we report a case of diabetic striatopathy exacerbated by hyperglycemia and hypoglycemia, with repeated follow-up with multiple imaging studies. This case suggested that putamen neuronal loss and dysfunction, gliosis, and ischemia are associated with diabetic striatopathy pathophysiology. In addition, striatal hyperintensity on T1-weighted MRI images was more pronounced after symptom remission when evaluated several times over a short period. Therefore, clinicians should be aware that even if MRI findings are normal in the very early stages of the onset of diabetic striatopathy, repeating MRIs at intervals may reveal typical findings.

3.
Mol Metab ; 77: 101797, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37709134

RESUMO

OBJECTIVE: Polyphenols have health-promoting effects, such as improving insulin resistance. Isoxanthohumol (IX), a prenylated flavonoid found in beer hops, has been suggested to reduce obesity and insulin resistance; however, the mechanism remains unknown. METHODS: High-fat diet-fed mice were administered IX. We analyzed glucose metabolism, gene expression profiles and histology of liver, epididymal adipose tissue and colon. Lipase activity, fecal lipid profiles and plasma metabolomic analysis were assessed. Fecal 16s rRNA sequencing was obtained and selected bacterial species were used for in vitro studies. Fecal microbiota transplantation and monocolonization were conducted to antibiotic-treated or germ-free (GF) mice. RESULTS: The administration of IX lowered weight gain, decreased steatohepatitis and improved glucose metabolism. Mechanistically, IX inhibited pancreatic lipase activity and lipid absorption by decreasing the expression of the fatty acid transporter CD36 in the small intestine, which was confirmed by increased lipid excretion in feces. IX administration increased markers of intestinal barrier function, including thickening the mucin layer and increasing caludin-1, a tight-junction related protein in the colon. In contrast, the effects of IX were nullified by antibiotics. As revealed using 16S rRNA sequencing, the microbial community structure changed with a significant increase in the abundance of Akkermansia muciniphila in the IX-treated group. An anaerobic chamber study showed that IX selectively promoted the growth of A. muciniphila while exhibiting antimicrobial activity against some Bacteroides and Clostridium species. To further explore the direct effect of A. muciniphila on lipid and glucose metabolism, we monocolonized either A. muciniphila or Bacteroides thetaiotaomicron to GF mice. A. muciniphila monocolonization decreased CD36 expression in the jejunum and improved glucose metabolism, with decreased levels of multiple classes of fatty acids determined using plasma metabolomic analysis. CONCLUSIONS: Our study demonstrated that IX prevents obesity and enhances glucose metabolism by inhibiting dietary fat absorption. This mechanism is linked to suppressing pancreatic lipase activity and shifts in microbial composition, notably an increase in A. muciniphila. These highlight new treatment strategies for preventing metabolic syndrome by boosting the gut microbiota with food components.


Assuntos
Resistência à Insulina , Animais , Camundongos , RNA Ribossômico 16S/genética , Obesidade/tratamento farmacológico , Obesidade/microbiologia , Verrucomicrobia/genética , Verrucomicrobia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta , Glucose/metabolismo , Lipase
4.
Diabetol Int ; 14(2): 125-133, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090127

RESUMO

Adipose tissue-resident macrophages (ATMs) are reported to be important for maintaining adipose tissue remodeling and homeostasis. ATMs were classified for the first time in 2007 into the M1 and M2 types. This theory suggests that in the non-obese adipose tissue, the anti-inflammatory, alternatively activated macrophages (AAMs) predominate, and regulate tissue homeostasis, remodeling, and insulin sensitivity. On the other hand, classically activated M1-type macrophages increase rapidly in obesity, secrete inflammatory cytokines, such as TNFα and IL-6, and induce insulin resistance. In recent years, experimental findings that cannot be explained by this theory have been clarified one after another and the theory is being reconsidered. In this review, based on recent findings, we summarize reports on the novel metabolic regulatory functions of ATMs beyond the M1/M2 paradigm.

5.
Nat Commun ; 13(1): 7058, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411280

RESUMO

Muscle regeneration requires the coordination of muscle stem cells, mesenchymal fibro-adipogenic progenitors (FAPs), and macrophages. How macrophages regulate the paracrine secretion of FAPs during the recovery process remains elusive. Herein, we systemically investigated the communication between CD206+ M2-like macrophages and FAPs during the recovery process using a transgenic mouse model. Depletion of CD206+ M2-like macrophages or deletion of CD206+ M2-like macrophages-specific TGF-ß1 gene induces myogenesis and muscle regeneration. We show that depletion of CD206+ M2-like macrophages activates FAPs and activated FAPs secrete follistatin, a promyogenic factor, thereby boosting the recovery process. Conversely, deletion of the FAP-specific follistatin gene results in impaired muscle stem cell function, enhanced fibrosis, and delayed muscle regeneration. Mechanistically, CD206+ M2-like macrophages inhibit the secretion of FAP-derived follistatin via TGF-ß signaling. Here we show that CD206+ M2-like macrophages constitute a microenvironment for FAPs and may regulate the myogenic potential of muscle stem/satellite cells.


Assuntos
Adipogenia , Folistatina , Animais , Camundongos , Macrófagos , Camundongos Transgênicos , Músculos , Receptor de Manose/imunologia
6.
Nutrients ; 13(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34959926

RESUMO

Recently, obesity-induced insulin resistance, type 2 diabetes, and cardiovascular disease have become major social problems. We have previously shown that Astaxanthin (AX), which is a natural antioxidant, significantly ameliorates obesity-induced glucose intolerance and insulin resistance. It is well known that AX is a strong lipophilic antioxidant and has been shown to be beneficial for acute inflammation. However, the actual effects of AX on chronic inflammation in adipose tissue (AT) remain unclear. To observe the effects of AX on AT functions in obese mice, we fed six-week-old male C57BL/6J on high-fat-diet (HFD) supplemented with or without 0.02% of AX for 24 weeks. We determined the effect of AX at 10 and 24 weeks of HFD with or without AX on various parameters including insulin sensitivity, glucose tolerance, inflammation, and mitochondrial function in AT. We found that AX significantly reduced oxidative stress and macrophage infiltration into AT, as well as maintaining healthy AT function. Furthermore, AX prevented pathological AT remodeling probably caused by hypoxia in AT. Collectively, AX treatment exerted anti-inflammatory effects via its antioxidant activity in AT, maintained the vascular structure of AT and preserved the stem cells and progenitor's niche, and enhanced anti-inflammatory hypoxia induction factor-2α-dominant hypoxic response. Through these mechanisms of action, it prevented the pathological remodeling of AT and maintained its integrity.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Anti-Inflamatórios , Antioxidantes , Suplementos Nutricionais , Tecido Adiposo/patologia , Animais , Citocinas/metabolismo , Glucose/metabolismo , Inflamação , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Xantofilas/administração & dosagem , Xantofilas/farmacologia
7.
Mol Metab ; 54: 101328, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562641

RESUMO

OBJECTIVE: Expansion of adipose tissue during obesity through the recruitment of newly generated adipocytes (hyperplasia) is metabolically healthy, whereas that through the enlargement of pre-existing adipocytes (hypertrophy) leads to metabolic complications. Accumulating evidence from genetic fate mapping studies suggests that in animal models receiving a high-fat diet (HFD), only adipocyte progenitors (APs) in gonadal white adipose tissue (gWAT) have proliferative potential. However, the proliferative potential and differentiating capacity of APs in the inguinal WAT (iWAT) of male mice remains controversial. The objective of this study was to investigate the proliferative and adipogenic potential of APs in the iWAT of HFD-fed male mice. METHODS: We generated PDGFRα-GFP-Cre-ERT2/tdTomato (KI/td) mice and traced PDGFRα-positive APs in male mice fed HFD for 8 weeks. We performed a comprehensive phenotypic analysis, including the histology, immunohistochemistry, flow cytometry, and gene expression analysis, of KI/td mice fed HFD. RESULTS: Contrary to the findings of others, we found an increased number of newly generated tdTomato+ adipocytes in the iWAT of male mice, which was smaller than that observed in the gWAT. We found that in male mice, the iWAT has more proliferating tdTomato+ APs than the gWAT. We also found that tdTomato+ APs showed a higher expression of Dpp4 and Pi16 than tdTomato- APs, and the expression of these genes was significantly higher in the iWAT than in the gWAT of mice fed HFD for 8 weeks. Collectively, our results reveal that HFD feeding induces the proliferation of tdTomato+ APs in the iWAT of male mice. CONCLUSION: In male mice, compared with gWAT, iWAT undergoes hyperplasia in response to 8 weeks of HFD feeding through the recruitment of newly generated adipocytes due to an abundance of APs with a high potential for proliferation and differentiation.


Assuntos
Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Adipogenia , Animais , Feminino , Masculino , Camundongos , Camundongos Congênicos , Camundongos Transgênicos
8.
iScience ; 24(5): 102445, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33997711

RESUMO

The gut microbiota metabolizes the nutrients to produce various metabolites that play crucial roles in host metabolism. However, the links between the microbiota established by different nutrients and the microbiota-influenced changes in the plasma lipids remain unclear. Diets rich in cornstarch, fructose, branched chain amino acids, soybean oil (SO), or lard established a unique microbiota and had influence on glucose metabolism, which was partially reproduced by transferring the microbiota. Comparison of plasma lipidomic analysis between germ-free and colonized mice revealed significant impacts of the microbiota on various lipid classes, and of note, the microbiota established by the SO diet, which was associated with the greatest degree of glucose intolerance, caused the maximum alteration of the plasma lipid profile. Thus, the gut microbiota composed of dietary nutrients was associated with dynamic changes in the lipids potentially having differential effects on glucose metabolism.

9.
PLoS One ; 16(3): e0248267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760832

RESUMO

Meflin (Islr) expression has gained attention as a marker for mesenchymal stem cells, but its function remains largely unexplored. Here, we report the generation of Meflin-CreERT2 mice with CreERT2 inserted under the Meflin gene promoter to label Meflin-expressing cells genetically, thereby enabling their lineages to be traced. We found that in adult mice, Meflin-expressing lineage cells were present in adipose tissue stroma and had differentiated into mature adipocytes. These cells constituted Crown-like structures in the adipose tissue of mice after high-fat diet loading. Cold stimulation led to the differentiation of Meflin-expressing lineage cells into beige adipocytes. Thus, the Meflin-CreERT2 mouse line is a useful new tool for visualizing and tracking the lineage of Meflin-expressing cells.


Assuntos
Tecido Adiposo Branco , Imunoglobulinas , Células-Tronco Mesenquimais/citologia , Camundongos Transgênicos , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Expressão Gênica , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
10.
J Cachexia Sarcopenia Muscle ; 11(1): 241-258, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32003547

RESUMO

BACKGROUND: Skeletal muscle is mainly responsible for insulin-stimulated glucose disposal. Dysfunction in skeletal muscle metabolism especially during obesity contributes to the insulin resistance. Astaxanthin (AX), a natural antioxidant, has been shown to ameliorate hepatic insulin resistance in obese mice. However, its effects in skeletal muscle are poorly understood. The current study aimed to investigate the molecular target of AX in ameliorating skeletal muscle insulin resistance. METHODS: We fed 6-week-old male C57BL/6J mice with normal chow (NC) or NC supplemented with AX (NC+AX) and high-fat-diet (HFD) or HFD supplemented with AX for 24 weeks. We determined the effect of AX on various parameters including insulin sensitivity, glucose uptake, inflammation, kinase signaling, gene expression, and mitochondrial function in muscle. We also determined energy metabolism in intact C2C12 cells treated with AX using the Seahorse XFe96 Extracellular Flux Analyzer and assessed the effect of AX on mitochondrial oxidative phosphorylation and mitochondrial biogenesis. RESULTS: AX-treated HFD mice showed improved metabolic status with significant reduction in blood glucose, serum total triglycerides, and cholesterol (p< 0.05). AX-treated HFD mice also showed improved glucose metabolism by enhancing glucose incorporation into peripheral target tissues, such as the skeletal muscle, rather than by suppressing gluconeogenesis in the liver as shown by hyperinsulinemic-euglycemic clamp study. AX activated AMPK in the skeletal muscle of the HFD mice and upregulated the expressions of transcriptional factors and coactivator, thereby inducing mitochondrial remodeling, including increased mitochondrial oxidative phosphorylation component and free fatty acid metabolism. We also assessed the effects of AX on mitochondrial biogenesis in the siRNA-mediated AMPK-depleted C2C12 cells and showed that the effect of AX was lost in the genetically AMPK-depleted C2C12 cells. Collectively, AX treatment (i) significantly ameliorated insulin resistance and glucose intolerance through regulation of AMPK activation in the muscle, (ii) stimulated mitochondrial biogenesis in the muscle, (iii) enhanced exercise tolerance and exercise-induced fatty acid metabolism, and (iv) exerted antiinflammatory effects via its antioxidant activity in adipose tissue. CONCLUSIONS: We concluded that AX treatment stimulated mitochondrial biogenesis and significantly ameliorated insulin resistance through activation of AMPK pathway in the skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fibrinolíticos/uso terapêutico , Resistência à Insulina/fisiologia , Mitocôndrias Musculares/metabolismo , Animais , Fibrinolíticos/farmacologia , Humanos , Masculino , Camundongos , Biogênese de Organelas , Xantofilas/farmacologia , Xantofilas/uso terapêutico
11.
Anticancer Res ; 39(12): 6887-6893, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31810958

RESUMO

BACKGROUND/AIM: Little information is available about the association between peripheral T-lymphocyte expression of programmed cell death protein 1 (PD1) and the efficacy of immune checkpoint inhibitor therapy in patients with non-small cell lung cancer (NSCLC). We analyzed the PD1 and cytotoxic T-lymphocyte associated protein 4 (CTLA4) expression in peripheral blood T-lymphocytes of patients with NSCLC receiving immune checkpoint inhibitor therapy. PATIENTS AND METHODS: Patients with NSCLC who were scheduled to receive treatment with immune checkpoint inhibitors were prospectively enrolled in this study between November 2017 and November 2018. Peripheral blood samples were obtained within 1 week before or after the initiation of treatment with an immune checkpoint inhibitor. RESULTS: Flow cytometry was conducted in 19 patients. Patients were treated with nivolumab, pembrolizumab, or atezolizumab. The group with a high percentage of PD1+CD4+ T-lymphocytes relative to the total CD4+ T-lymphocyte count had a longer progression-free survival [median=6.0 (95% confidence intervaI=0.5-not estimated) months] than the group with a low percentage of PD1+CD4+ T-lymphocytes [median=1.1 (95% confidence intervaI=0.4-5.0) months; p=0.034, log-rank test]. However, no significant associations were detected with the percentages of CTLA4+CD4+, PD1+CD8+ or CTLA4+CD8+ T-lymphocytes in the peripheral blood. CONCLUSION: A high percentage of peripheral CD4+PD1+ T-lymphocytes was associated with a longer progression-free survival in patients receiving treatment with an immune checkpoint inhibitor. The systemic immune system may have an influence on the efficacy of immune checkpoint inhibitor therapy in patients with NSCLC.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Receptor de Morte Celular Programada 1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/uso terapêutico , Contagem de Linfócito CD4 , Carcinoma Pulmonar de Células não Pequenas/imunologia , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Nivolumabe/uso terapêutico , Prognóstico , Estudos Prospectivos , Resultado do Tratamento
12.
Sci Rep ; 9(1): 12284, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439906

RESUMO

Obesity increases the risk of cancer. Increased levels of hormones (such as oestrogen, insulin, insulin-like growth factor, and leptin), free fatty acid-induced production of reactive oxygen species, an altered intestinal microbiome and chronic inflammation are known to be associated with an increased cancer risk in obese subjects. However, the mechanism underlying the connection between obesity and cancer development remains elusive. Here, we show that a high-fat diet (HFD) promotes tumour initiation/progression and induces a phenotypic switch from PD-1- CD8+ non-exhausted T cells to PD-1+ CD8+ exhausted T cells in a murine breast cancer model. While PD-1- CD8+ non-exhausted T cells predominated in the mammary glands of normal diet (ND)-fed mice, PD-1+ CD8+ exhausted T cells accumulated in the developing tumours of HFD-fed mice. Gene expression profiles indicated that PD-1+ CD8+ T cells expressed higher levels of the tumour-trophic gene Opn and lower levels of the cytotoxic genes Ifng and Gzmb than did PD-1- CD8+ T cells. Our study provides a possible mechanistic linkage between obesity and cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinogênese , Gorduras na Dieta/efeitos adversos , Neoplasias Mamárias Experimentais , Obesidade , Animais , Linfócitos T CD8-Positivos/patologia , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Gorduras na Dieta/farmacologia , Feminino , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/imunologia , Obesidade/patologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia
13.
J Diabetes Investig ; 10(6): 1411-1418, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30897274

RESUMO

AIMS/INTRODUCTION: Chronic inflammation of the liver is often observed with obesity or type 2 diabetes. In these pathological conditions, the immunological cells, such as macrophages, play important roles in the development or growth of liver cancer. Recently, it was reported that hypoxia-inducible factor-1α (HIF-1α) is a key molecule for the acquisition of inflammatory M1 polarity of macrophages. In the present study, we examined the effects of altered macrophage polarity on obesity- and diabetes-associated liver cancer using macrophage-specific HIF-1α knockout (KO) mice. MATERIALS AND METHODS: To induce liver cancer in the mice, diethylnitrosamine, a chemical carcinogen, was used. Both KO mice and wild-type littermates were fed either a high-fat diet (HFD) or normal chow. They were mainly analyzed 6 months after HFD feeding. RESULTS: Development of liver cancer after HFD feeding was 45% less in KO mice than in wild-type littermates mice. Phosphorylation of extracellular signal-regulated kinase 2 was also lower in the liver of KO mice. Those effects of HIF-1α deletion in macrophages were not observed in normal chow-fed mice. Furthermore, the size of liver tumors did not differ between KO and wild-type littermates mice, even those on a HFD. These results suggest that the activation of macrophage HIF-1α by HFD is involved not in the growth, but in the development of liver cancer with the enhanced oncogenic extracellular signal-regulated kinase 2 signaling in hepatocytes. CONCLUSIONS: The activation of macrophage HIF-1α might play important roles in the development of liver cancer associated with diet-induced obesity and diabetes.


Assuntos
Diabetes Mellitus Experimental/complicações , Dieta Hiperlipídica , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Inflamação/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Macrófagos/metabolismo , Obesidade/complicações , Animais , Diabetes Mellitus Experimental/fisiopatologia , Inflamação/etiologia , Inflamação/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia
14.
Sci Rep ; 8(1): 14567, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275453

RESUMO

Beige adipocytes are an inducible form of thermogenic adipocytes that become interspersed within white adipose tissue (WAT) depots in response to cold exposure. Previous studies have shown that type 2 cytokines and M2 macrophages induce cold-induced browning in inguinal WAT (ingWAT) by producing catecholamines. Exactly how the conditional and partial depletion of CD206+ M2-like macrophages regulates the cold-induced browning of ingWAT, however, remains unknown. We examined the role of CD206+ M2-like macrophages in the cold-induced browning of WAT using genetically engineered CD206DTR mice, in which CD206+ M2-like macrophages were conditionally depleted. The partial depletion of CD206+ M2-like enhanced UCP1 expression in ingWAT, as shown by immunostaining, and also upregulated the expression of Ucp1 and other browning-related marker genes in ingWAT after cold exposure. A flow cytometry analysis showed that the partial depletion of CD206+ M2-like macrophages caused an increase in the number of beige progenitors in ingWAT in response to cold. Thus, we concluded that CD206+ M2-like macrophages inhibit the proliferation of beige progenitors and that the partial depletion of CD206+ M2-like macrophages releases this inhibition, thereby enhancing browning and insulin sensitivity.


Assuntos
Adipócitos Bege/fisiologia , Tecido Adiposo/efeitos da radiação , Proliferação de Células , Temperatura Baixa , Lectinas Tipo C/análise , Procedimentos de Redução de Leucócitos , Macrófagos/imunologia , Lectinas de Ligação a Manose/análise , Receptores de Superfície Celular/análise , Animais , Citometria de Fluxo , Perfilação da Expressão Gênica , Macrófagos/química , Receptor de Manose , Camundongos , Proteína Desacopladora 1/análise
15.
Sci Rep ; 8(1): 14597, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30254249

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

16.
Sci Rep ; 8(1): 11370, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054532

RESUMO

Sirt1 plays an important role in regulating glucose and lipid metabolism in obese animal models. Impaired adipose tissue angiogenesis in the obese state decreases adipogenesis and thereby contributes to glucose intolerance and lipid metabolism. However, the mechanism by which Sirt1 activation affects obesity-associated impairments in angiogenesis in the adipose tissue is not fully understood. Here, we show that SRT1720 treatment induces angiogenic genes in cultured 3T3-L1 preadipocytes and ex vivo preadipocytes. siRNA-mediated knockdown of Sirt1 in 3T3-L1 preadipocytes downregulated angiogenic genes in the preadipocytes. SRT1720 treatment upregulated metabolically favorable genes and reduced inflammatory gene expressions in the adipose tissue of diet-induced obese (DIO) mice. Collectively, these findings suggest a novel role of SRT1720-induced Sirt1 activation in the induction of angiogenic genes in preadipocytes, thereby reducing inflammation and fibrosis in white adipose tissue (WAT) and promoting insulin sensitivity.


Assuntos
Adipócitos/metabolismo , Dieta Hiperlipídica , Regulação da Expressão Gênica , Resistência à Insulina/genética , Neovascularização Fisiológica/genética , Sirtuína 1/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Neovascularização Fisiológica/efeitos dos fármacos
17.
Nat Commun ; 8(1): 286, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28819169

RESUMO

Adipose tissue resident macrophages have important roles in the maintenance of tissue homeostasis and regulate insulin sensitivity for example by secreting pro-inflammatory or anti-inflammatory cytokines. Here, we show that M2-like macrophages in adipose tissue regulate systemic glucose homeostasis by inhibiting adipocyte progenitor proliferation via the CD206/TGFß signaling pathway. We show that adipose tissue CD206+ cells are primarily M2-like macrophages, and ablation of CD206+ M2-like macrophages improves systemic insulin sensitivity, which was associated with an increased number of smaller adipocytes. Mice genetically engineered to have reduced numbers of CD206+ M2-like macrophages show a down-regulation of TGFß signaling in adipose tissue, together with up-regulated proliferation and differentiation of adipocyte progenitors. Our findings indicate that CD206+ M2-like macrophages in adipose tissues create a microenvironment that inhibits growth and differentiation of adipocyte progenitors and, thereby, control adiposity and systemic insulin sensitivity.Adipose tissue contains macrophages that can influence both local and systemic metabolism via the secretion of cytokines. Here, Nawaz et al. report that M2-like macrophages, present in adipose tissue, create a microenvironment that inhibits proliferation of adipocyte progenitors due to the secretion of TGF-ß1.


Assuntos
Adipócitos/citologia , Glucose/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Lectinas de Ligação a Manose/metabolismo , Obesidade/metabolismo , Receptores de Superfície Celular/metabolismo , Adipócitos/metabolismo , Adipócitos Brancos/metabolismo , Adipócitos Brancos/patologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Lectinas Tipo C/genética , Receptor de Manose , Lectinas de Ligação a Manose/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Superfície Celular/genética , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta/metabolismo
18.
Diabetes ; 65(12): 3649-3659, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27625023

RESUMO

Adipose tissue hypoxia is an important feature of pathological adipose tissue expansion. Hypoxia-inducible factor-1α (HIF-1α) in adipocytes reportedly induces oxidative stress and fibrosis, rather than neoangiogenesis via vascular endothelial growth factor (VEGF)-A. We previously reported that macrophages in crown-like structures (CLSs) are both hypoxic and inflammatory. In the current study, we examined how macrophage HIF-1α is involved in high-fat diet (HFD)-induced inflammation, neovascularization, hypoxia, and insulin resistance using mice with myeloid cell-specific HIF-1α deletion that were fed an HFD. Myeloid cell-specific HIF-1α gene deletion protected against HFD-induced inflammation, CLS formation, poor vasculature development in the adipose tissue, and systemic insulin resistance. Despite a reduced expression of Vegfa in epididymal white adipose tissue (eWAT), the preadipocytes and endothelial cells of HIF-1α-deficient mice expressed higher levels of angiogenic factors, including Vegfa, Angpt1, Fgf1, and Fgf10 in accordance with preferable eWAT remodeling. Our in vitro study revealed that lipopolysaccharide-treated bone marrow-derived macrophages directly inhibited the expression of angiogenic factors in 3T3-L1 preadipocytes. Thus, macrophage HIF-1α is involved not only in the formation of CLSs, further enhancing the inflammatory responses, but also in the inhibition of neoangiogenesis in preadipocytes. We concluded that these two pathways contribute to the obesity-related physiology of pathological adipose tissue expansion, thus causing systemic insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Resistência à Insulina/genética , Células Mieloides/metabolismo , Células 3T3-L1 , Angiopoietina-1/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Feminino , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Teste de Tolerância a Glucose , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Diabetol Int ; 7(4): 342-351, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30603285

RESUMO

Adipose tissue not only functions as the major energy-storing tissue, but also functions as an endocrine organ that regulates systemic metabolism by releasing various hormones called adipokines. Macrophages play a critical role in maintaining adipocyte health in a lean state and in remodeling during the progression of obesity. Large numbers of classically activated (M1) macrophages accumulate in adipose tissue as adipocytes become larger because of excessive energy conditions, and they adversely affect insulin resistance by triggering local and systemic inflammation. In contrast, alternatively activated (M2) macrophages seem to maintain the health of adipose tissues in a lean state. In addition, they play a role in adapting to excess energy states, because M2 macrophage dysfunction caused by genetic disruption of the M2 gene results in metabolic disorders under high-fat-fed conditions that are probably attributable to their anti-inflammatory functions. Nonetheless, how M2 macrophages contribute to maintaining the health of adipose tissue and therefore to insulin sensitivity is largely unknown. In this article, we review the literature on the role of M1 and M2 macrophages in metabolism, with a special focus on the role of M2 macrophages in adipose tissue. Likewise, we raise topics of M2 macrophages in non-adipose tissues to expand our understanding of macrophage heterogeneity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA