Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Viruses ; 16(4)2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675888

RESUMO

The pandemic caused by SARS-CoV-2 is still a major health problem. Newly emerging variants and long-COVID-19 represent a challenge for the global health system. In particular, individuals in developing countries with insufficient health care need easily accessible, affordable and effective treatments of COVID-19. Previous studies have demonstrated the efficacy of functional inhibitors of acid sphingomyelinase against infections with various viruses, including early variants of SARS-CoV-2. This work investigated whether the acid sphingomyelinase inhibitors fluoxetine and sertraline, usually used as antidepressant molecules in clinical practice, can inhibit the replication of the former and recently emerged SARS-CoV-2 variants in vitro. Fluoxetine and sertraline potently inhibited the infection with pseudotyped virus-like particles and SARS-CoV-2 variants D614G, alpha, delta, omicron BA.1 and omicron BA.5. These results highlight fluoxetine and sertraline as priority candidates for large-scale phase 3 clinical trials at different stages of SARS-CoV-2 infections, either alone or in combination with other medications.


Assuntos
Antivirais , COVID-19 , Fluoxetina , SARS-CoV-2 , Sertralina , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , Sertralina/farmacologia , Fluoxetina/farmacologia , Replicação Viral/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Chlorocebus aethiops , Células Vero , COVID-19/virologia , Animais , Tratamento Farmacológico da COVID-19
2.
Tuberculosis (Edinb) ; 147: 102493, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38547568

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.

3.
J Mol Med (Berl) ; 101(3): 295-310, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790532

RESUMO

Pancreas ductal adenocarcinoma (PDAC) remains a malignant tumor with very poor prognosis and low 5-year overall survival. Here, we aimed to simultaneously target mitochondria and lysosomes as a new treatment paradigm of malignant pancreas cancer in vitro and in vivo. We demonstrate that the clinically used sphingosine analog FTY-720 together with PAPTP, an inhibitor of mitochondrial Kv1.3, induce death of pancreas cancer cells in vitro and in vivo. The combination of both drugs results in a marked inhibition of the acid sphingomyelinase and accumulation of cellular sphingomyelin in vitro and in vivo in orthotopic and flank pancreas cancers. Mechanistically, PAPTP and FTY-720 cause a disruption of both mitochondria and lysosomes, an alteration of mitochondrial bioenergetics and accumulation of cytoplasmic Ca2+, events that collectively mediate cell death. Our findings point to an unexpected cross-talk between lysosomes and mitochondria mediated by sphingolipid metabolism. We show that the combination of PAPTP and FTY-720 induces massive death of pancreas cancer cells, thereby leading to a substantially delayed and reduced PDAC growth in vivo. KEY MESSAGES: FTY-720 inhibits acid sphingomyelinase in pancreas cancer cells (PDAC). FTY-720 induces sphingomyelin accumulation and lysosomal dysfunction. The mitochondrial Kv1.3 inhibitor PAPTP disrupts mitochondrial functions. PAPTP and FTY-720 synergistically kill PDAC in vitro. The combination of FTY-720 and PAPTP greatly delays PDAC growth in vivo.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Esfingomielina Fosfodiesterase , Esfingomielinas/metabolismo , Cloridrato de Fingolimode , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas
4.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555152

RESUMO

This study investigated whether sphingosine is effective as prophylaxis against Aspergillus spp. and Candida spp. In vitro experiments showed that sphingosine is very efficacious against A. fumigatus and Nakeomyces glabrataa (formerly named C. glabrata). A mouse model of invasive aspergillosis showed that sphingosine exerts a prophylactic effect and that sphingosine-treated animals exhibit a strong survival advantage after infection. Furthermore, mechanistic studies showed that treatment with sphingosine leads to the early depolarization of the mitochondrial membrane potential (Δψm) and the generation of mitochondrial reactive oxygen species and to a release of cytochrome C within minutes, thereby presumably initiating apoptosis. Because of its very good tolerability and ease of application, inhaled sphingosine should be further developed as a possible prophylactic agent against pulmonary aspergillosis among severely immunocompromised patients.


Assuntos
Antifúngicos , Candida , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Esfingosina/farmacologia , Testes de Sensibilidade Microbiana , Aspergillus
5.
Cancers (Basel) ; 14(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35454865

RESUMO

Despite several new developments in the treatment of multiple myeloma, all available therapies are only palliative without curative potential and all patients ultimately relapse. Thus, novel therapeutic options are urgently required to prolong survival of or to even cure myeloma. Here, we show that multiple myeloma cells express the potassium channel Kv1.3 in their mitochondria. The mitochondrial Kv1.3 inhibitors PAPTP and PCARBTP are efficient against two tested human multiple myeloma cell lines (L-363 and RPMI-8226) and against ex vivo cultured, patient-derived myeloma cells, while healthy bone marrow cells are spared from toxicity. Cell death after treatment with PAPTP and PCARBTP occurs via the mitochondrial apoptotic pathway. In addition, we identify up-regulation of the multidrug resistance pump MDR-1 as the main potential resistance mechanism. Combination with ABT-199 (venetoclax), an inhibitor of Bcl2, has a synergistic effect, suggesting that mitochondrial Kv1.3 inhibitors could potentially be used as combination partner to venetoclax, even in the treatment of t(11;14) negative multiple myeloma, which represent the major part of cases and are rather resistant to venetoclax alone. We thus identify mitochondrial Kv1.3 channels as druggable targets against multiple myeloma.

7.
Redox Biol ; 37: 101705, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33007503

RESUMO

The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool.


Assuntos
Canal de Potássio Kv1.3 , Mitocôndrias , Animais , Linhagem Celular Tumoral , Dissecação , Humanos , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio
8.
J Lipid Res ; 61(6): 896-910, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32156719

RESUMO

Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.


Assuntos
Inibidores Enzimáticos/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Linhagem Celular , Humanos , Lisossomos/metabolismo
9.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835809

RESUMO

Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can't achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients.


Assuntos
Lipogranulomatose de Farber/enzimologia , Esfingomielina Fosfodiesterase/deficiência , Ceramidase Ácida/metabolismo , Amitriptilina/farmacologia , Animais , Ceramidas/metabolismo , Citocinas/metabolismo , Lipogranulomatose de Farber/patologia , Camundongos Endogâmicos C57BL , Esfingomielina Fosfodiesterase/metabolismo , Análise de Sobrevida , Aumento de Peso/efeitos dos fármacos
10.
Biol Chem ; 399(10): 1183-1202, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29908121

RESUMO

Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1tmEx1 mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.


Assuntos
Modelos Animais de Doenças , Lipogranulomatose de Farber/patologia , Animais , Ceramidas/análise , Ceramidas/metabolismo , Cromatografia Líquida , Lipogranulomatose de Farber/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esfingomielinas/análise , Esfingomielinas/metabolismo , Espectrometria de Massas em Tandem
11.
Neurosignals ; 25(1): 26-38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28869943

RESUMO

BACKGROUND/AIMS: Glioblastoma (GBM) is one of the most aggressive cancers, counting for a high number of the newly diagnosed patients with central nervous system (CNS) cancers in the United States and Europe. Major features of GBM include aggressive and invasive growth as well as a high resistance to treatment. Kv1.3, a potassium channel of the shaker family, is expressed in the inner mitochondrial membrane of many cancer cells. Inhibition of mitochondrial Kv1.3 was shown to induce apoptosis in several tumor cells at doses that were not lethal for normal cells. METHODS: We investigated the expression of Kv1.3 in different glioma cell lines by immunocytochemistry, western blotting and electron microscopy and analyzed the effect of newly synthesized, mitochondria-targeted, Kv1.3 inhibitors on the induction of cell death in these cells. Finally, we performed in vivo studies on glioma bearing mice. RESULTS: Here, we report that Kv1.3 is expressed in mitochondria of human and murine GL261, A172 and LN308 glioma cells. Treatment with the novel Kv1.3 inhibitors PAPTP or PCARBTP as well as with clofazimine induced massive cell death in glioma cells, while Psora-4 and PAP-1 were almost without effect. However, in vivo experiments revealed that the drugs had no effect on orthotopic brain tumors in vivo. CONCLUSION: These data serve as proof of principle that Kv1.3 inhibitors kills GBM cells, but drugs that act in vivo against glioblastoma must be developed to translate these findings in vivo.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Canal de Potássio Kv1.3/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Humanos , Imuno-Histoquímica , Camundongos , Compostos Organofosforados/farmacologia , Compostos Organofosforados/uso terapêutico
12.
Cancer Cell ; 31(4): 516-531.e10, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28399409

RESUMO

The potassium channel Kv1.3 is highly expressed in the mitochondria of various cancerous cells. Here we show that direct inhibition of Kv1.3 using two mitochondria-targeted inhibitors alters mitochondrial function and leads to reactive oxygen species (ROS)-mediated death of even chemoresistant cells independently of p53 status. These inhibitors killed 98% of ex vivo primary chronic B-lymphocytic leukemia tumor cells while sparing healthy B cells. In orthotopic mouse models of melanoma and pancreatic ductal adenocarcinoma, the compounds reduced tumor size by more than 90% and 60%, respectively, while sparing immune and cardiac functions. Our work provides direct evidence that specific pharmacological targeting of a mitochondrial potassium channel can lead to ROS-mediated selective apoptosis of cancer cells in vivo, without causing significant side effects.


Assuntos
Antineoplásicos/farmacologia , Canal de Potássio Kv1.3/antagonistas & inibidores , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Bloqueadores dos Canais de Potássio/farmacologia , Idoso , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Estudos de Casos e Controles , Cumarínicos/farmacologia , Estabilidade de Medicamentos , Feminino , Humanos , Canal de Potássio Kv1.3/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Compostos Organofosforados/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/química
13.
EXCLI J ; 14: 1153-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664351

RESUMO

Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice.

14.
J Mol Med (Berl) ; 93(6): 675-89, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25616357

RESUMO

UNLABELLED: Pulmonary edema associated with increased vascular permeability is a severe complication of Staphylococcus aureus-induced sepsis and an important cause of human pathology and death. We investigated the role of the mammalian acid sphingomyelinase (Asm)/ceramide system in the development of lung edema caused by S. aureus. Our findings demonstrate that genetic deficiency or pharmacologic inhibition of Asm reduced lung edema in mice infected with S. aureus. The Asm/ceramide system triggered the formation of superoxide, resulting in degradation of tight junction proteins followed by lung edema. Treatment of infected mice with amitriptyline, a potent inhibitor of Asm, protected mice from lung edema caused by S. aureus, but did not reduce systemic bacterial numbers. In turn, treatment with antibiotics reduced bacterial numbers but did not protect mice from lung edema. In contrast, only the combination of antibiotics and amitriptyline inhibited both pulmonary edema and bacteremia protecting mice from lethal sepsis and lung dysfunction suggesting the combination of both drugs as novel treatment option for sepsis. KEY MESSAGES: Antibiotics are often insufficient to cure S. aureus-induced sepsis. S. aureus induces lung edema via the Asm/ceramide system. Genetic deficiency of Asm inhibits lung dysfunction upon infection with S. aureus. Pharmacologic inhibition of Asm reduces lung edema induced by S. aureus. Antibiotics plus amitriptyline protect mice from lung edema and lethal S. aureus sepsis.


Assuntos
Pulmão/efeitos dos fármacos , Edema Pulmonar/terapia , Sepse/terapia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Infecções Estafilocócicas/terapia , Staphylococcus aureus/efeitos dos fármacos , Amitriptilina/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Ceramidas/metabolismo , Inibidores Enzimáticos/uso terapêutico , Técnicas de Inativação de Genes , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Edema Pulmonar/genética , Edema Pulmonar/microbiologia , Edema Pulmonar/patologia , Sepse/genética , Sepse/microbiologia , Sepse/patologia , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/patologia , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo
15.
Cell Calcium ; 58(1): 131-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25443654

RESUMO

Although chemotherapy is able to cure many patients with malignancies, it still also often fails. Therefore, novel approaches and targets for chemotherapeutic treatment of malignancies are urgently required. Recent studies demonstrated the expression of several potassium channels in the inner mitochondrial membrane. Among them the voltage gated potassium channel Kv1.3 and the big-potassium (BK) channel were shown to directly function in cell death by serving as target for pro-apoptotic Bax and Bak proteins. Here, we discuss the role of mitochondrial potassium channel Kv1.3 (mitoKv1.3) in cell death and its potential function in treatment of solid tumors, leukemia and lymphoma. Bax and Bak inhibit mitoKv1.3 by directly binding into the pore of the channel, by a toxin-like mechanism. Inhibition of mitoKv1.3 results in an initial hyperpolarization of the inner mitochondrial membrane that triggers the production of reactive oxygen species (ROS). ROS in turn induce a release of cytochrome c from the cristae of the inner mitochondrial membrane and an activation of the permeability transition pore, resulting in opening of the intrinsic apoptotic cell death. Since mitoKv1.3 functions downstream of pro-apoptotic Bax and Bak, compounds that directly inhibit mitoKv1.3 may serve as a new class of drugs for treatment of tumors, even with an altered expression of either pro- or anti-apoptotic Bcl-2 protein family members. This was successfully proven by the in vivo treatment of mouse melanoma and ex vivo human chronic leukemia B cells with inhibitors of mitoKv1.3.


Assuntos
Mitocôndrias/metabolismo , Canais de Potássio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/uso terapêutico , Bloqueadores dos Canais de Potássio/toxicidade , Canais de Potássio/química , Canais de Potássio/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
J Immunol ; 187(6): 3104-10, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21844385

RESUMO

An immunoregulatory role of aryl hydrocarbon receptor (AhR) has been shown in conventional αß and γδ T cells, but its function in skin γδ T cells (dendritic epidermal T cells [DETC]) is unknown. In this study, we demonstrate that DETC express AhR in wild-type mice, and are specifically absent in the epidermis of AhR-deficient mice (AhR-KO). We show that DETC precursors are generated in the thymus and home to the skin. Proliferation of DETC in the skin was impaired in AhR-KO mice, resulting in a >90% loss compared with wild type. Surprisingly, DETC were not replaced by αß T cells or conventional γδ T cells, suggesting a limited time frame for seeding this niche. We found that DETC from AhR-KO mice failed to express the receptor tyrosine kinase c-Kit, a known growth factor for γδ T cells in the gut. Moreover, we found that c-kit is a direct target of AhR, and propose that AhR-dependent c-Kit expression is potentially involved in DETC homeostasis. DETC are a major source of GM-CSF in the skin. Recently, we had shown that impaired Langerhans cell maturation in AhR-KO is related to low GM-CSF levels. Our findings suggest that the DETCs are necessary for LC maturation, and provide insights into a novel role for AhR in the maintenance of skin-specific γδ T cells, and its consequences for the skin immune network.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Epiderme/imunologia , Homeostase/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Linfócitos T/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Separação Celular , Células Epidérmicas , Epiderme/metabolismo , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo
17.
J Invest Dermatol ; 131(1): 203-10, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20861855

RESUMO

Melanogenesis is the vital response to protect skin cells against UVB-induced DNA damage. Melanin is produced by melanocytes, which transfer it to surrounding keratinocytes. Recently, we have shown that the aryl hydrocarbon receptor (AhR) is part of the UVB-stress response in epidermal keratinocytes. UVB triggers AhR signaling by generating the AhR ligand 6-formylindolo(3,2-b)carbazole from tryptophan. We show here that normal murine melanocytes express functional AhR. Using standard UVB tanning protocols, AhR-deficient mice were shown to tan significantly weaker than wild-type mice; in these mice, tyrosinase activity in the epidermis was lower as well. Tanning responses and tyrosinase activity, however, were normal in keratinocyte-specific conditional AhR knockout mice, indicating that release of melanogenic keratinocyte factors is unaffected by the UVB-AhR signaling pathway and that the diminished tanning response in AhR(-/-) mice is confined to the level of melanocytes. Accordingly, the number of dihydroxyphenylalanin-positive melanocytes increased significantly less on UVB irradiation in AhR(-/-) mice than in wild-type mice. This difference in melanocyte number was associated with a significantly reduced expression of stem cell factor-1 and c-kit in melanocytes of AhR(-/-) mice. Thus, the environmental signal sensor AhR links solar UVB radiation to skin pigmentation.


Assuntos
Melanócitos , Receptores de Hidrocarboneto Arílico/fisiologia , Pigmentação da Pele/fisiologia , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Animais , Contagem de Células , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos da radiação , Células Cultivadas , Células Epidérmicas , Epiderme/fisiologia , Epiderme/efeitos da radiação , Queratinócitos/citologia , Queratinócitos/fisiologia , Queratinócitos/efeitos da radiação , Melaninas/metabolismo , Melanócitos/citologia , Melanócitos/fisiologia , Melanócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética
18.
Toxicol Sci ; 118(1): 98-107, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20729464

RESUMO

The toxic environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent immunomodulatory chemical. TCDD activates the aryl hydrocarbon receptor (AhR) and suppresses peripheral humoral and cellular adaptive immune responses. Though the major route of uptake is via food, little is known until now on the immunotoxic effects of TCDD on the gut-associated lymphoid tissue. We show here that AhR is strongly expressed along the small intestine, especially in intestinal epithelial cells (IEC). The AhR marker gene cyp1a1 is induced in IEC by oral TCDD exposure. We asked how TCDD affects oral tolerance, a unique function of mucosal immunity. C57BL/6 mice were injected with 10 µg/kg body weight TCDD and fed with ovalbumin (OVA) in a high-dose tolerization protocol. Mice were immunized and boosted with OVA on days 12, 23, and 55 after tolerization. Five of 14, 6 of 15, and 13 of 14 TCDD-treated mice generated OVA-specific immunoglobulin (Ig)G1 antibodies after the first, second, and third immunization with OVA, respectively. Only one mouse harbored anti-OVA IgG1 antibodies in the control group even after the third immunization with OVA. OVA-specific IgA in fecal samples of tolerized and TCDD-exposed mice could be detected at the levels of nontolerized mice, whereas completely absent in tolerant control mice. Correlated to this, we found in TCDD-treated mice an increase in interleukin-6 producing CD103+ dendritic cells (DC) present in the gut-draining mesenteric lymph nodes (MLN) and a small increase in the frequency of Th17 cells. Neither the frequencies nor the absolute numbers of immune cells in the lamina propria (LP) or in intraepithelial lymphocytes were changed by TCDD treatment. Our data not only have implications for food allergies in settings of environmental exposure but also raise concerns regarding the harmlessness of overdosing potential AhR agonist in food, which needs to be studied further.


Assuntos
Poluentes Ambientais/toxicidade , Tolerância Imunológica/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Citocromo P-450 CYP1A1/genética , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Poluentes Ambientais/imunologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Homeostase/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Imunoglobulina G/sangue , Interleucina-6/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Ovalbumina/farmacologia , Dibenzodioxinas Policloradas/imunologia , RNA Mensageiro/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Células Th17/citologia , Células Th17/efeitos dos fármacos
19.
J Immunol ; 182(11): 6709-17, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19454665

RESUMO

Langerhans cells (LC) are professional APCs of the epidermis. Recently, it was suggested that they are tolerogenic and control adverse immune reactions, including against low molecular mass chemicals. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is involved in low molecular mass chemical metabolism and cell differentiation. Growing evidence suggests a role for the AhR in the immune system, for example, by influencing dendritic cell and T cell differentiation. We found that the AhR and its repressor AhRR are expressed in LC of C57BL/6 mice. LC, unexpectedly, did not respond to a strong AhR agonist with induction of transcripts of xenobiotic metabolizing enzymes. To test for a physiological role of the AhR in LC, we investigated how AhR deficiency affects LC. We found that AhR-deficient LC were impaired in maturation; they remained smaller and less granular, did not up-regulate expression of costimulatory molecules CD40, CD80, and CD24a during in vitro maturation, and their phagocytic capacity was higher. Interestingly, the mRNA expression of tolerogenic Ido was severely decreased in AhR-deficient LC, and enzyme activity could not be induced in AhR-deficient bone marrow-derived dendritic cells. GM-CSF, needed for LC maturation, was secreted in significantly lower amounts by AhR-deficient epidermal cells. Congruent with this impaired maturity and capacity to mature, mice mounted significantly weaker contact hypersensitivity against FITC. Our data suggest that the AhR is involved in LC maturation, both cell autonomously and through bystander cells. At the same time, the AhR might be part of the risk strategy of LC against unwanted immune activation by potential skin allergens.


Assuntos
Diferenciação Celular , Dermatite de Contato , Células de Langerhans/imunologia , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Antígenos CD/genética , Células Epidérmicas , Epiderme/patologia , Regulação da Expressão Gênica , Sistema Imunitário , Células de Langerhans/química , Células de Langerhans/patologia , Camundongos , Camundongos Knockout , Fagocitose , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/imunologia
20.
Future Med Chem ; 1(9): 1583-91, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21425980

RESUMO

Every organism is in contact with numerous small molecules (<1000 Da). Chemicals may cause or trigger adverse health effects, including diseases of the immune system. They may also be exploited as drugs. In this review, we look at the interaction between small molecules and the immune system. We discuss the hapten and pharmacological interaction concepts of chemical interaction to trigger T cells and how chemicals can participate in cellular signaling pathways. As a sensor of small molecules, the arylhydrocarbon receptor controls expression of many xenobiotic metabolizing enzymes, including those in the immunological barrier organs; the skin and gut. The relevance of the arylhydrocarbon receptor in the dynamic interaction of the immune system with the chemical environment is therefore discussed.


Assuntos
Sistema Imunitário/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/toxicidade , Xenobióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA