Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chem Soc Rev ; 53(10): 4976-5013, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38597222

RESUMO

Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.


Assuntos
Amiloide , Transição de Fase , Dobramento de Proteína , Humanos , Amiloide/química , Amiloide/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Separação de Fases
2.
Nat Commun ; 14(1): 6199, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794023

RESUMO

Liquid-liquid phase separation (LLPS) has emerged as a crucial biological phenomenon underlying the sequestration of macromolecules (such as proteins and nucleic acids) into membraneless organelles in cells. Unstructured and intrinsically disordered domains are known to facilitate multivalent interactions driving protein LLPS. We hypothesized that LLPS could be an intrinsic property of proteins/polypeptides but with distinct phase regimes irrespective of their sequence and structure. To examine this, we studied many (a total of 23) proteins/polypeptides with different structures and sequences for LLPS study in the presence and absence of molecular crowder, polyethylene glycol (PEG-8000). We showed that all proteins and even highly charged polypeptides (under study) can undergo liquid condensate formation, however with different phase regimes and intermolecular interactions. We further demonstrated that electrostatic, hydrophobic, and H-bonding or a combination of such intermolecular interactions plays a crucial role in individual protein/peptide LLPS.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/metabolismo , Peptídeos
3.
Biomaterials ; 295: 122032, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791521

RESUMO

Biomaterials mimicking extracellular matrices (ECM) for three-dimensional (3D) cultures have gained immense interest in tumor modeling and in vitro organ development. Here, we introduce a new class of amyloid fibril-based peptide hydrogels as a versatile biomimetic ECM scaffold for 3D cell culture and homogenous tumor spheroid modeling. We show that these amyloid fibril-based hydrogels are thixotropic and allow cancer cell adhesion, proliferation, and migration. All seven designed hydrogels support 3D cell culture with five different cancer cell lines forming spheroid with necrotic core and upregulation of the cancer biomarkers. We further developed the homogenous, single spheroid using the drop cast method and the data suggest that all hydrogels support the tumor spheroid formation but with different necrotic core diameters. The detailed gene expression analysis of MCF7 spheroid by microarray suggested the involvement of pro-oncogenes and significant regulatory pathways responsible for tumor spheroid formation. Further, using breast tumor tissue from a mouse xenograft model, we show that selected amyloid hydrogels support the formation of tumor spheroids with a well-defined necrotic core, cancer-associated gene expression, higher drug resistance, and tumor heterogeneity reminiscent of the original tumor. Altogether, we have developed an easy-to-use, rapid, cost-effective, and scalable platform for generating in vitro cancer models for the screening of anti-cancer therapeutics and developing personalized medicine.


Assuntos
Neoplasias , Esferoides Celulares , Humanos , Camundongos , Animais , Hidrogéis , Amiloide , Linhagem Celular
4.
J Mol Biol ; 435(1): 167713, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35787838

RESUMO

Aberrant aggregation of the misfolded presynaptic protein, α-Synuclein (α-Syn) into Lewy body (LB) and Lewy neuritis (LN) is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Numerous studies have suggested that prefibrillar and fibrillar species of the misfolded α-Syn aggregates are responsible for cell death in PD pathogenesis. However, the precise molecular events during α-Syn aggregation, especially in the early stages, remain elusive. Emerging evidence has demonstrated that liquid-liquid phase separation (LLPS) of α-Syn occurs in the nucleation step of α-Syn aggregation, which offers an alternate non-canonical aggregation pathway in the crowded microenvironment. The liquid-like α-Syn droplets gradually undergo an irreversible liquid-to-solid phase transition into amyloid-like hydrogel entrapping oligomers and fibrils. This new mechanism of α-Syn LLPS and gel formation might represent the molecular basis of cellular toxicity associated with PD. This review aims to demonstrate the recent development of α-Syn LLPS, the underlying mechanism along with the microscopic events of aberrant phase transition. This review further discusses how several intrinsic and extrinsic factors regulate the thermodynamics and kinetics of α-Syn LLPS and co-LLPS with other proteins, which might explain the pathophysiology of α-Syn in various neurodegenerative diseases.


Assuntos
Doença de Parkinson , Agregação Patológica de Proteínas , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo
5.
Nanoscale ; 14(40): 15021-15033, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36194184

RESUMO

Biomolecules are known to interact with metals and produce nanostructured hybrid materials with diverse morphologies and functions. In spite of the great advancement in the principles of biomimetics for designing complex nano-bio structures, the interplay between the physical properties of biomolecules such as sequence, charge, and hydrophobicity with predictable morphology of the resulting nanomaterials is largely unknown. Here, using various amyloidogenic proteins/peptides and their corresponding fibrils in combination with different pH, we show defined principle for gold nanocrystal growth into triangular and supra-spheres with high prediction. Using a combination of different biophysical and structural techniques, we establish the mechanism of nucleation and crystal growth of gold nanostructures and show the effective isolation of intact nanostructures from amyloid templates using protein digestion. This study will significantly advance our design principle for bioinspired materials for specific functions with great predictability.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Proteínas Amiloidogênicas , Nanopartículas Metálicas/química , Peptídeos/química , Interações Hidrofóbicas e Hidrofílicas
6.
J Mol Biol ; 434(19): 167761, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35907572

RESUMO

α-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. The mechanism of how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure-function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates. These polymorphs display the structural differences as demonstrated by solid-state NMR and mass spectrometry studies and also possess different cellular activities such as seeding, internalization, and cell-to-cell transfer of aggregates. HMFs, with a compact core structure, exhibit low seeding potency but readily internalize and transfer from one cell to another. The less structured PMFs lack transcellular transfer ability but induce abundant α-Syn pathology and trigger the formation of aggresomes in cells. Overall, the study highlights that the conformational heterogeneity in the aggregation pathway may lead to fibril polymorphs with distinct prion-like behavior.


Assuntos
Príons , Agregação Patológica de Proteínas , alfa-Sinucleína , Amiloide/química , Humanos , Corpos de Inclusão/química , Espectroscopia de Ressonância Magnética , Príons/metabolismo , alfa-Sinucleína/química
7.
J Phys Chem Lett ; 13(28): 6427-6438, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35816132

RESUMO

The size of amyloid seeds is known to modulate their autocatalytic amplification and cellular toxicity. However, the seed size-dependent secondary nucleation mechanism, toxicity, and disease-associated biological processes mediated by α-synuclein (α-Syn) fibrils are largely unknown. Using the cellular model and in vitro reconstitution, we showed that the size of α-Syn fibril seeds dictates not only their cellular internalization and associated cell death but also the distinct mechanisms of fibril amplification pathways involved in the pathological conformational change of α-Syn. Specifically, small fibril seeds showed elongation possibly through monomer addition at the fibril termini, whereas longer fibrils template the fibril amplification by surface-mediated nucleation as demonstrated by super-resolution microscopy. The distinct mechanism of fibril amplification and cellular uptake along with toxicity suggest that breakage of fibrils into seeds of different sizes determines the underlying pathological outcome of synucleinopathies.


Assuntos
Amiloide , alfa-Sinucleína , Amiloide/metabolismo , alfa-Sinucleína/metabolismo
8.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35257659

RESUMO

Synergistic-aggregation and cross-seeding by two different proteins/peptides in the amyloid aggregation are well evident in various neurological disorders including Alzheimer's disease. Here, we show co-storage of human Prolactin (PRL), which is associated with lactation in mammals, and neuropeptide galanin (GAL) as functional amyloids in secretory granules (SGs) of the female rat. Using a wide variety of biophysical studies, we show that irrespective of the difference in sequence and structure, both hormones facilitate their synergic aggregation to amyloid fibrils. Although each hormone possesses homotypic seeding ability, a unidirectional cross-seeding of GAL aggregation by PRL seeds and the inability of cross seeding by mixed fibrils suggest tight regulation of functional amyloid formation by these hormones for their efficient storage in SGs. Further, the faster release of functional hormones from mixed fibrils compared to the corresponding individual amyloid, suggests a novel mechanism of heterologous amyloid formation in functional amyloids of SGs in the pituitary.


The formation of plaques of proteins called 'amyloids' in the brain is one of the hallmark characteristics of both Alzheimer's and Parkinson's disease, but amyloids can form in many tissues and organs, often disrupting normal activity. A lot of the research into amyloids has focused on their role in disease, but it turns out that amyloids can also appear in healthy tissues. For example, some protein hormones form amyloids that act as storage depots, helping cells to release the hormone when it is needed. Normally, amyloids are made mostly of a single type of protein or protein fragment associated with a particular disease like Alzheimer's. Often, this type of amyloid promotes plaque formation in other proteins, which aggravates other diseases (for example, the amyloids that form in Alzheimer's can lead to Parkinson's disease or type II diabetes getting worse).The plaques start growing from small amyloid fragments called seeds. In mixed amyloids ­ amyloids made of two types of proteins ­ seeds made of one protein can trigger the formation of amyloids of the other protein. This raises the question, is this true for hormones? The body often releases more than one hormone at a time from the same tissue; for example, the pituitary gland releases prolactin and galanin simultaneously. However, these hormones have completely different structures, so whether they can form a mixed amyloid is unclear. To answer this question, Chatterjee et al. first determined that, within the pituitary gland of female rats, prolactin and galanin could be found together in the same cells, forming mixed amyloids. To understand out how this happens, Chatterjee et al. tried seeding new amyloids using either prolactin or galanin. This revealed that only prolactin seeds were able to trigger the formation of galanin amyloids. Chatterjee et al. also found that the mixed amyloids could release the hormones faster than amyloids made from either protein alone. Together, these results suggest that the collaboration between these two proteins may help maintain hormone balance in the body. Problems with hormone storage and release lead to various human diseases, including prolactinoma. Understanding amyloid storage depots could reveal new ways to control hormone levels. Further research could also help to explain more about well-studied diseases linked to amyloids, like Alzheimer's.


Assuntos
Amiloidose , Hormônios Peptídicos , Amiloide/química , Proteínas Amiloidogênicas , Animais , Feminino , Galanina , Humanos , Estágios do Ciclo de Vida , Mamíferos , Prolactina , Ratos
9.
Biophys Chem ; 281: 106736, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923391

RESUMO

Cytoplasmic deposition of aberrantly misfolded α-synuclein (α-Syn) is a common feature of synucleinopathies, including Parkinson's disease (PD). However, the precise pathogenic mechanism of α-Syn in synucleinopathies remains elusive. Emerging evidence has suggested that α-Syn may contribute to PD pathogenesis in several ways; wherein the contribution of fibrillar species, for exerting toxicity and disease transmission, cannot be neglected. Further, the oligomeric species could be the most plausible neurotoxic species causing neuronal cell death. However, understanding the structural and molecular insights of these oligomers are very challenging due to the heterogeneity and transient nature of the species. In this review, we discuss the recent advancements in understanding the formation and role of α-Syn oligomers in PD pathogenesis. We also summarize the different types of α-Syn oligomeric species and potential mechanisms to exert neurotoxicity. Finally, we address the possible ways to target α-Syn as a promising approach against PD and the possible future directions.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/química
10.
J Phys Chem B ; 125(49): 13406-13414, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34861110

RESUMO

Amyloid fibrils are structurally heterogeneous protein aggregates that are implicated in a wide range of neurodegenerative and other proteopathic diseases. These fibrils exist in a variety of different tertiary and higher-level structures, and this exhibited polymorphism greatly complicates any structural study of amyloid fibrils. In this work, we demonstrate a method of using polarization-resolved microscopy to directly observe the structural heterogeneity of individual amyloid fibrils using amyloid-bound fluorophores. We formulate a mathematical quantity, helical anisotropy, which utilizes the polarized emission of amyloid-bound fluorophores to report on the local structure of individual fibrils. Using this method, we show how model amyloid fibrils generated from short peptides exhibit diverse structural properties both between different fibrils and within a single fibril, in a manner that is replicated for fibrils assembled from longer proteins. Our method represents an accessible and easily adaptable technique by which polymorphism in the structure of amyloid fibrils can be probed. Additionally, the methodology we describe here can be easily extended to the study of other fibrillar and otherwise ordered supramolecular structures.


Assuntos
Amiloide , Peptídeos , Peptídeos beta-Amiloides , Microscopia de Polarização
11.
J Phys Chem Lett ; 11(24): 10489-10496, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33275439

RESUMO

Photothermal effects of metal nanoparticles (NPs) are used for various biotechnological applications. Although NPs have been used in a polymerase chain reaction (PCR), the effects of shape on the photothermal properties and its efficiency on PCR are less explored. The present study reports the synthesis of triangular gold and silver NPs, which can attain temperatures up to ∼90 °C upon irradiation with 808 nm laser. This photothermal property of synthesized nanoparticles was evaluated using various concentrations, irradiation time, and power to create a temperature profile required for variable-temperature PCR. This study reports a cost-effective, machine-free PCR using both gold and silver triangular NPs, with efficiency similar to that of a commercial PCR machine. Interestingly, addition of triangular NPs increases PCR efficiency in commercial PCR reactions. The higher PCR efficiencies are due to the direct binding and unfolding of double-stranded DNA as suggested by circular dichroism and UV spectroscopy. These findings suggest that triangular NPs can be used to develop cost-effective, robust machine-free PCR modules and can be used in various other photothermal applications.

12.
ACS Chem Neurosci ; 11(18): 2836-2848, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32833434

RESUMO

Synucleinopathies are a class of neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple System Atrophy (MSA). The common pathological hallmark of synucleinopathies is the filamentous α-synuclein (α-Syn) aggregates along with membrane components in cytoplasmic inclusions in the brain. ß-Synuclein (ß-Syn), an isoform of α-Syn, inhibits α-Syn aggregation and prevents its neurotoxicity, suggesting the neuroprotective nature of ß-Syn. However, this notion changed with the discovery of disease-associated ß-Syn mutations, V70M and P123H, in patients with DLB. It is still unclear how these missense mutations alter the structural and amyloidogenic properties of ß-Syn, leading to neurodegeneration. Here, we characterized the biophysical properties and investigated the effect of mutations on ß-Syn fibrillation under different conditions. V70M and P123H show high membrane binding affinity compared to wild-type ß-Syn, suggesting their potential role in membrane interactions. ß-Syn and its mutants do not aggregate under normal physiological conditions; however, the proteins undergo self-polymerization in a slightly acidic microenvironment and/or in the presence of an inducer, forming long unbranched amyloid fibrils similar to α-Syn. Strikingly, V70M and P123H mutants exhibit accelerated fibrillation compared to native ß-Syn under these conditions. NMR study further revealed that these point mutations induce local perturbations at the site of mutation in ß-Syn. Overall, our data provide insight into the biophysical properties of disease-associated ß-Syn mutations and demonstrate that these mutants make the native protein more susceptible to aggregation in an altered microenvironment.


Assuntos
Doença de Parkinson , beta-Sinucleína , Amiloide , Humanos , Mutação/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , beta-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA