Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 14(1): 488, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717582

RESUMO

Induced pluripotent stem cell (iPSC) reprogramming is inefficient and understanding the molecular mechanisms underlying this inefficiency holds the key to successfully control cellular identity. Here, we report 24 reprogramming roadblock genes identified by CRISPR/Cas9-mediated genome-wide knockout (KO) screening. Of these, depletion of the predicted KRAB zinc finger protein (KRAB-ZFP) Zfp266 strongly and consistently enhances murine iPSC generation in several reprogramming settings, emerging as the most robust roadblock. We show that ZFP266 binds Short Interspersed Nuclear Elements (SINEs) adjacent to binding sites of pioneering factors, OCT4 (POU5F1), SOX2, and KLF4, and impedes chromatin opening. Replacing the KRAB co-suppressor with co-activator domains converts ZFP266 from an inhibitor to a potent facilitator of iPSC reprogramming. We propose that the SINE-KRAB-ZFP interaction is a critical regulator of chromatin accessibility at regulatory elements required for efficient cellular identity changes. In addition, this work serves as a resource to further illuminate molecular mechanisms hindering reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas , Dedos de Zinco , Animais , Camundongos , Reprogramação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel
2.
Genes Dev ; 31(20): 2085-2098, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29138277

RESUMO

Expression of the transcription factors OCT4, SOX2, KLF4, and cMYC (OSKM) reprograms somatic cells into induced pluripotent stem cells (iPSCs). Reprogramming is a slow and inefficient process, suggesting the presence of safeguarding mechanisms that counteract cell fate conversion. One such mechanism is senescence. To identify modulators of reprogramming-induced senescence, we performed a genome-wide shRNA screen in primary human fibroblasts expressing OSKM. In the screen, we identified novel mediators of OSKM-induced senescence and validated previously implicated genes such as CDKN1A We developed an innovative approach that integrates single-cell RNA sequencing (scRNA-seq) with the shRNA screen to investigate the mechanism of action of the identified candidates. Our data unveiled regulation of senescence as a novel way by which mechanistic target of rapamycin (mTOR) influences reprogramming. On one hand, mTOR inhibition blunts the induction of cyclin-dependent kinase (CDK) inhibitors (CDKIs), including p16INK4a, p21CIP1, and p15INK4b, preventing OSKM-induced senescence. On the other hand, inhibition of mTOR blunts the senescence-associated secretory phenotype (SASP), which itself favors reprogramming. These contrasting actions contribute to explain the complex effect that mTOR has on reprogramming. Overall, our study highlights the advantage of combining functional screens with scRNA-seq to accelerate the discovery of pathways controlling complex phenotypes.


Assuntos
Reprogramação Celular , Senescência Celular , Perfilação da Expressão Gênica , RNA Interferente Pequeno , Análise de Sequência de RNA , Serina-Treonina Quinases TOR/fisiologia , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Análise de Célula Única , Serina-Treonina Quinases TOR/antagonistas & inibidores
3.
Cell Stem Cell ; 21(6): 791-805.e9, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29174331

RESUMO

Reprogramming of cellular identity using exogenous expression of transcription factors (TFs) is a powerful and exciting tool for tissue engineering, disease modeling, and regenerative medicine. However, generation of desired cell types using this approach is often plagued by inefficiency, slow conversion, and an inability to produce mature functional cells. Here, we show that expression of constitutively active SMAD2/3 significantly improves the efficiency of induced pluripotent stem cell (iPSC) generation by the Yamanaka factors. Mechanistically, SMAD3 interacts with reprogramming factors and co-activators and co-occupies OCT4 target loci during reprogramming. Unexpectedly, active SMAD2/3 also markedly enhances three other TF-mediated direct reprogramming conversions, from B cells to macrophages, myoblasts to adipocytes, and human fibroblasts to neurons, highlighting broad and general roles for SMAD2/3 as cell-reprogramming potentiators. Our results suggest that co-expression of active SMAD2/3 could enhance multiple types of TF-based cell identity conversion and therefore be a powerful tool for cellular engineering.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Humanos , Fatores de Transcrição/genética
4.
J Cell Sci ; 126(Pt 21): 5052-61, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23986474

RESUMO

The chemical genetic strategy in which mutational enlargement of the ATP-binding site sensitises of a protein kinase to bulky ATP analogues has proved to be an elegant tool for the generation of conditional analogue-sensitive kinase alleles in a variety of model organisms. Here, we describe a novel substitution mutation in the kinase domain that can enhance the sensitivity of analogue-sensitive kinases. Substitution of a methionine residue to phenylalanine in the +2 position after HRDLKxxN motif of the subdomain VIb within the kinase domain markedly increased the sensitivities of the analogue-sensitive kinases to ATP analogues in three out of five S. pombe kinases (i.e. Plo1, Orb5 and Wee1) that harbor this conserved methionine residue. Kinome alignment established that a methionine residue is found at this site in 5-9% of kinases in key model organisms, suggesting that a broader application of this structural modification may enhance ATP analogue sensitivity of analogue-sensitive kinases in future studies. We also show that the enhanced sensitivity of the wee1.as8 allele in a cdc25.22 background can be exploited to generate highly synchronised mitotic and S phase progression at 36°C. Proof-of-principle experiments show how this novel synchronisation technique will prove of great use in the interrogation of the mitotic or S-phase functions through temperature sensitivity mutation of molecules of interest in fission yeast.


Assuntos
Trifosfato de Adenosina/metabolismo , Caseína Quinase II/genética , Proteínas de Ciclo Celular/genética , Mitose , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/enzimologia , Trifosfato de Adenosina/análogos & derivados , Substituição de Aminoácidos , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Sequência Conservada , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Metionina/genética , Metionina/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA