Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 363: 109502, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34952410

RESUMO

This study assessed the levels of mycotoxins in maize from Kenyan households. Further, local open pollinated maize varieties were compared with commercial hybrids to evaluate which variety is less susceptible to mycotoxin contamination. Four hundred and eighty (n = 480) maize samples were collected in the years 2018-2020 from households in Eastern, Western, Coastal and Lake Victoria regions of Kenya. Liquid chromatography coupled to tandem mass spectrometry was used to detect and quantify 22 mycotoxins, along with 31 Aspergillus flavus metabolites in the samples. Eastern Kenya had the highest aflatoxin (AF) contamination with 75% of samples having AF levels above the Kenyan regulatory limits (10 µg/kg), the highest concentration was 558.1 µg/kg. In Western Kenya, only 18% of samples had concentration levels above the Kenyan regulatory limits for AF with highest sample having 73.3 µg/kg. The Lake Victoria region had the most fumonisins (F) contamination, with 53% of the samples having fumonisin B1 (FB1) < 1000 µg/kg. However, only 20% of the samples surpassed the Kenyan regulatory limit for total fumonisins (2000 µg/kg) with the highest concentration being 13,022 µg/kg. In addition, 21.6% of samples from the Lake Victoria region had zearalenone (ZEN) and deoxynivalenol (DON) above regulatory limits for European countries (1000 µg/kg). Western region had the least A. flavus metabolites contamination (18%) while the Eastern region had the highest incidence of A. flavus metabolites (81%). Among the A. flavus metabolites, cyclopiazonic acid (CPA), beta-cyclopiazonic acid (ß CPA), flavacol (FLV) and methylcitreo-isocoumarin (MIC) positively correlated with each other but negatively correlated with the other metabolites. Significant positive co-occurrence was also noted among Fusarium mycotoxins: nivalenol (NIV) positively correlated with DON (r = 0.81), fusarenon-X (FX) (r = 0.81) and ZEN (r = 0.70). Negative correlations were observed between Aspergillus and Fusarium mycotoxins: aflatoxin B1 (AFB1) negatively correlated with FB1 (r = -0.11), FX (r = -0.17) and ZEN (r = -0.20). Local open-pollinated maize varieties (L-opv) were less susceptible to mycotoxin contamination compared to the commercial hybrids (C-hy). This study reveals that Kenyan maize is contaminated with multiple mycotoxins most of which are not regulated in Kenya despite being regulated in other parts of the world. A comprehensive legislation should therefore be put in place to protect the Kenyan public against chronic exposure to these mycotoxins. In addition to high yield, there is a need for commercial hybrid maize breeders to incorporate mycotoxin resistance as an important trait in germplasm improvement in seeds production.


Assuntos
Micotoxinas , Aspergillus flavus , Contaminação de Alimentos/análise , Quênia , Micotoxinas/análise , Zea mays
2.
Sci Rep ; 10(1): 10334, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587262

RESUMO

In this study, 15 different mycotoxins were estimated in three staple cereals from selected agro-ecological regions in Nigeria using a 'novel' green extraction method, pressurized hot water extraction (PHWE) in comparison to a conventional solvent extraction method. Discrimination of the results of PHWE and solvent extraction using principal component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA) did not yield any differential clustering patterns. All maize samples (n = 16), 32% (n = 38) of sorghum and 35% (n = 37) of millet samples were positive for at least one of the 15 tested mycotoxins. Contamination levels for the cereals were higher in the warm humid rain forest region and gradually decreased towards the hot and arid region in the north of the country. The results demonstrate the applicability of PHWE as a possible alternative extraction method to conventional methods of extraction, which are solvent based.


Assuntos
Grão Comestível/química , Contaminação de Alimentos/análise , Química Verde/métodos , Micotoxinas/isolamento & purificação , Solventes/química , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Grão Comestível/microbiologia , Grão Comestível/toxicidade , Contaminação de Alimentos/prevenção & controle , Química Verde/instrumentação , Milhetes/química , Milhetes/microbiologia , Milhetes/toxicidade , Micotoxinas/toxicidade , Nigéria , Pressão , Extração em Fase Sólida/instrumentação , Extração em Fase Sólida/métodos , Sorghum/química , Sorghum/microbiologia , Sorghum/toxicidade , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos , Água/química , Zea mays/química , Zea mays/microbiologia , Zea mays/toxicidade
3.
Toxins (Basel) ; 11(2)2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781776

RESUMO

Fungal contamination and the consequent mycotoxin production is a hindrance to food and feed safety, international trade and human and animal health. In Africa, fungal contamination by Fusarium and Aspergillus is heightened by tropical climatic conditions that create a suitable environment for pre- and postharvest mycotoxin production. The biocontrol of Fusarium and its associated fusariotoxins has stagnated at laboratory and experimental levels with species of Trichoderma, Bacillus and atoxigenic Fusarium being tested as the most promising candidates. Hitherto, there is no impetus to upscale for field use owing to the inconsistent results of these agents. Non-aflatoxigenic strains of Aspergillus have been developed to create biocontrol formulations by outcompeting the aflatoxigenic strains, thus thwarting aflatoxins on the target produce by 70% to 90%. Questions have been raised on their ability to produce other mycotoxins like cyclopiazonic acid, to potentially exchange genetic material and to become aflatoxigenic with consequent deleterious effects on other organisms and environments. Other biocontrol approaches to mitigate aflatoxins include the use of lactic acid bacteria and yeast species which have demonstrated the ability to prevent the growth of Aspergillus flavus and consequent toxin production under laboratory conditions. Nevertheless, these strategies seem to be ineffective under field conditions. The efficacy of biological agents is normally dependent on environmental factors, formulations' safety to non-target hosts and the ecological impact. Biocontrol agents can only be effectively evaluated after long-term use, causing a never-ending debate on the use of live organisms as a remedy to pests and diseases over the use of chemicals. Biocontrol should be used in conjunction with good agricultural practices coupled with good postharvest management to significantly reduce mycotoxins in the African continent.


Assuntos
Agentes de Controle Biológico , Contaminação de Alimentos/prevenção & controle , Fusarium , Micotoxinas , África , Aspergillus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA