Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659851

RESUMO

Intraventricular vector flow mapping (VFM) is a growingly adopted echocardiographic modality that derives time-resolved two-dimensional flow maps in the left ventricle (LV) from color-Doppler sequences. Current VFM models rely on kinematic constraints arising from planar flow incompressibility. However, these models are not informed by crucial information about flow physics; most notably the pressure and shear forces within the fluid and the resulting accelerations. This limitation has rendered VFM unable to combine information from different time frames in an acquisition sequence or derive fluctuating pressure maps. In this study, we leveraged recent advances in artificial intelligence (AI) to develop AI-VFM, a vector flow mapping modality that uses physics-informed neural networks (PINNs) encoding mass conservation and momentum balance inside the LV, and no-slip boundary conditions at the LV endocardium. AI-VFM recovers the flow and pressure fields in the LV from standard echocardiographic scans. It performs phase unwrapping and recovers flow data in areas without input color-Doppler data. AI-VFM also recovers complete flow maps at time points without color-Doppler input data, producing super-resolution flow maps. We show that informing the PINNs with momentum balance is essential to achieving temporal super-resolution and significantly increases the accuracy of AI-VFM compared to informing the PINNs only with mass conservation. AI-VFM is solely informed by each patient's flow physics; it does not utilize explicit smoothness constraints or incorporate data from other patients or flow models. AI-VFM takes 15 minutes to run in off-the-shelf graphics processing units and its underlying PINN framework could be extended to map other flow-associated metrics like blood residence time or the concentration of coagulation species.

2.
PLoS Comput Biol ; 19(10): e1011583, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37889899

RESUMO

Clot formation is a crucial process that prevents bleeding, but can lead to severe disorders when imbalanced. This process is regulated by the coagulation cascade, a biochemical network that controls the enzyme thrombin, which converts soluble fibrinogen into the fibrin fibers that constitute clots. Coagulation cascade models are typically complex and involve dozens of partial differential equations (PDEs) representing various chemical species' transport, reaction kinetics, and diffusion. Solving these PDE systems computationally is challenging, due to their large size and multi-scale nature. We propose a multi-fidelity strategy to increase the efficiency of coagulation cascade simulations. Leveraging the slower dynamics of molecular diffusion, we transform the governing PDEs into ordinary differential equations (ODEs) representing the evolution of species concentrations versus blood residence time. We then Taylor-expand the ODE solution around the zero-diffusivity limit to obtain spatiotemporal maps of species concentrations in terms of the statistical moments of residence time, [Formula: see text], and provide the governing PDEs for [Formula: see text]. This strategy replaces a high-fidelity system of N PDEs representing the coagulation cascade of N chemical species by N ODEs and p PDEs governing the residence time statistical moments. The multi-fidelity order (p) allows balancing accuracy and computational cost providing a speedup of over N/p compared to high-fidelity models. Moreover, this cost becomes independent of the number of chemical species in the large computational meshes typical of the arterial and cardiac chamber simulations. Using a coagulation network with N = 9 and an idealized aneurysm geometry with a pulsatile flow as a benchmark, we demonstrate favorable accuracy for low-order models of p = 1 and p = 2. The thrombin concentration in these models departs from the high-fidelity solution by under 20% (p = 1) and 2% (p = 2) after 20 cardiac cycles. These multi-fidelity models could enable new coagulation analyses in complex flow scenarios and extensive reaction networks. Furthermore, it could be generalized to advance our understanding of other reacting systems affected by flow.


Assuntos
Trombina , Trombose , Humanos , Coagulação Sanguínea , Fibrina
3.
medRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873442

RESUMO

Background: Extracting explainable flow metrics is a bottleneck to the clinical translation of advanced cardiac flow imaging modalities. We hypothesized that reduced-order models (ROMs) of intraventricular flow are a suitable strategy for deriving simple and interpretable clinical metrics suitable for further assessments. Combined with machine learning (ML) flow-based ROMs could provide new insight to help diagnose and risk-stratify patients. Methods: We analyzed 2D color-Doppler echocardiograms of 81 non-ischemic dilated cardiomyopathy (DCM) patients, 51 hypertrophic cardiomyopathy (HCM) patients, and 77 normal volunteers (Control). We applied proper orthogonal decomposition (POD) to build patient-specific and cohort-specific ROMs of LV flow. Each ROM aggregates a low number of components representing a spatially dependent velocity map modulated along the cardiac cycle by a time-dependent coefficient. We tested three classifiers using deliberately simple ML analyses of these ROMs with varying supervision levels. In supervised models, hyperparameter gridsearch was used to derive the ROMs that maximize classification power. The classifiers were blinded to LV chamber geometry and function. We ran vector flow mapping on the color-Doppler sequences to help visualize flow patterns and interpret the ML results. Results: POD-based ROMs stably represented each cohort through 10-fold cross-validation. The principal POD mode captured >80% of the flow kinetic energy (KE) in all cohorts and represented the LV filling/emptying jets. Mode 2 represented the diastolic vortex and its KE contribution ranged from <1% (HCM) to 13% (DCM). Semi-unsupervised classification using patient-specific ROMs revealed that the KE ratio of these two principal modes, the vortex-to-jet (V2J) energy ratio, is a simple, interpretable metric that discriminates DCM, HCM, and Control patients. Receiver operating characteristic curves using V2J as classifier had areas under the curve of 0.81, 0.91, and 0.95 for distinguishing HCM vs. Control, DCM vs. Control, and DCM vs. HCM, respectively. Conclusions: Modal decomposition of cardiac flow can be used to create ROMs of normal and pathological flow patterns, uncovering simple interpretable flow metrics with power to discriminate disease states, and particularly suitable for further processing using ML.

4.
Comput Biol Med ; 163: 107128, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37352639

RESUMO

Disruptions to left atrial (LA) blood flow, such as those caused by atrial fibrillation (AF), can lead to thrombosis in the left atrial appendage (LAA) and an increased risk of systemic embolism. LA hemodynamics are influenced by various factors, including LA anatomy and function, and pulmonary vein (PV) inflow conditions. In particular, the PV flow split can vary significantly among and within patients depending on multiple factors. In this study, we investigated how changes in PV flow split affect LA flow transport, focusing for the first time on blood stasis in the LAA, using a high-fidelity patient-specific computational fluid dynamics (CFD) model. We use an Immersed Boundary Method, simulating the flow in a fixed, uniform Cartesian mesh and imposing the movement of the LA walls with a moving Lagrangian mesh generated from 4D Computerized Tomography images. We analyzed LA anatomies from eight patients with varying atrial function, including three with AF and either a LAA thrombus or a history of Transient Ischemic Attacks (TIAs). Using four different flow splits (60/40% and 55/45% through right and left PVs, even flow rate, and same velocity through each PV), we found that flow patterns are sensitive to PV flow split variations, particularly in planes parallel to the mitral valve. Changes in PV flow split also had a significant impact on blood stasis and could contribute to increased risk for thrombosis inside the LAA, particularly in patients with AF and previous LAA thrombus or a history of TIAs. Our study highlights the importance of considering patient-specific PV flow split variations when assessing LA hemodynamics and identifying patients at increased risk for thrombosis and stroke. This knowledge is relevant to planning clinical procedures such as AF ablation or the implementation of LAA occluders.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Veias Pulmonares , Humanos , Veias Pulmonares/diagnóstico por imagem , Átrios do Coração/diagnóstico por imagem , Hemodinâmica
5.
Radiol Cardiothorac Imaging ; 5(2): e220134, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124646

RESUMO

Purpose: To investigate whether endocardial regional shortening computed from four-dimensional (4D) CT angiography (RSCT) can be used as a decision classifier to detect the presence of left ventricular (LV) wall motion abnormalities (WMAs). Materials and Methods: One hundred electrocardiographically gated cardiac 4D CT studies (mean age, 59 years ± 14 [SD]; 61 male patients) conducted between April 2018 and December 2020 were retrospectively evaluated. Three experts labeled LV wall motion in each of the 16 American Heart Association (AHA) segments as normal or abnormal; they also measured peak RSCT across one heartbeat in each segment. The data set was split evenly into training and validation groups. During training, interchangeability of RSCT thresholding with experts to detect WMA was assessed using the individual equivalence index (γ), and an optimal threshold of the peak RSCT (RSCT*) that achieved maximum agreement was identified. RSCT* was then validated using the validation group, and the effect of AHA segment-specific thresholds was evaluated. Agreement was assessed using κ statistics. Results: The optimal threshold, RSCT* of -0.19, when applied to all AHA segments, led to high agreement (agreement rate = 92.17%, κ = 0.82) and interchangeability with experts (γ = -2.58%). The same RSCT* also achieved high agreement in the validation group (agreement rate = 90.29%, κ = 0.76, γ = -0.38%). The use of AHA segment-specific thresholds (range: 0.16 to -0.23 across AHA segments) slightly improved agreement (1.79% increase). Conclusion: RSCT thresholding was interchangeable with expert visual analysis in detecting segmental WMA from 4D CT and may be used as an objective decision classifier.Keywords: CT, Left Ventricle, Regional Endocardial Shortening, Wall Motion Abnormality Supplemental material is available for this article. © RSNA, 2023.

6.
J Cardiovasc Transl Res ; 16(5): 1099-1109, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36939959

RESUMO

Current treatments for patients with coronary aneurysms caused by Kawasaki disease (KD) are based primarily on aneurysm size. This ignores hemodynamic factors influencing myocardial ischemic risk. We performed patient-specific computational hemodynamics simulations for 15 KD patients, with parameters tuned to patients' arterial pressure and cardiac function. Ischemic risk was evaluated in 153 coronary arteries from simulated fractional flow reserve (FFR), wall shear stress, and residence time. FFR correlated weakly with aneurysm [Formula: see text]-scores (correlation coefficient, [Formula: see text]) but correlated better with the ratio of maximum-to-minimum aneurysmal lumen diameter ([Formula: see text]). FFR dropped more rapidly distal to aneurysms, and this correlated more with the lumen diameter ratio ([Formula: see text]) than [Formula: see text]-score ([Formula: see text]). Wall shear stress correlated better with the diameter ratio ([Formula: see text]), while residence time correlated more with [Formula: see text]-score ([Formula: see text]). Overall, the maximum-to-minimum diameter ratio predicted ischemic risk better than [Formula: see text]-score. Although FFR immediately distal to aneurysms was nonsignificant, its rapid rate of decrease suggests elevated risk.


Assuntos
Aneurisma Coronário , Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Síndrome de Linfonodos Mucocutâneos , Isquemia Miocárdica , Humanos , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/complicações , Hemodinâmica , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/complicações , Vasos Coronários/diagnóstico por imagem , Aneurisma Coronário/diagnóstico por imagem , Aneurisma Coronário/etiologia , Angiografia Coronária
7.
Front Cardiovasc Med ; 9: 919751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966529

RESUMO

Background: The presence of left ventricular (LV) wall motion abnormalities (WMA) is an independent indicator of adverse cardiovascular events in patients with cardiovascular diseases. We develop and evaluate the ability to detect cardiac wall motion abnormalities (WMA) from dynamic volume renderings (VR) of clinical 4D computed tomography (CT) angiograms using a deep learning (DL) framework. Methods: Three hundred forty-three ECG-gated cardiac 4DCT studies (age: 61 ± 15, 60.1% male) were retrospectively evaluated. Volume-rendering videos of the LV blood pool were generated from 6 different perspectives (i.e., six views corresponding to every 60-degree rotation around the LV long axis); resulting in 2058 unique videos. Ground-truth WMA classification for each video was performed by evaluating the extent of impaired regional shortening visible (measured in the original 4DCT data). DL classification of each video for the presence of WMA was performed by first extracting image features frame-by-frame using a pre-trained Inception network and then evaluating the set of features using a long short-term memory network. Data were split into 60% for 5-fold cross-validation and 40% for testing. Results: Volume rendering videos represent ~800-fold data compression of the 4DCT volumes. Per-video DL classification performance was high for both cross-validation (accuracy = 93.1%, sensitivity = 90.0% and specificity = 95.1%, κ: 0.86) and testing (90.9, 90.2, and 91.4% respectively, κ: 0.81). Per-study performance was also high (cross-validation: 93.7, 93.5, 93.8%, κ: 0.87; testing: 93.5, 91.9, 94.7%, κ: 0.87). By re-binning per-video results into the 6 regional views of the LV we showed DL was accurate (mean accuracy = 93.1 and 90.9% for cross-validation and testing cohort, respectively) for every region. DL classification strongly agreed (accuracy = 91.0%, κ: 0.81) with expert visual assessment. Conclusions: Dynamic volume rendering of the LV blood pool combined with DL classification can accurately detect regional WMA from cardiac CT.

9.
Acta Biomater ; 151: 414-425, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995404

RESUMO

Vein grafts, the most commonly used conduits in multi-vessel coronary artery bypass grafting surgery, have high intermediate- and long-term failure rates. The abrupt and marked increase in hemodynamic loads on the vein graft is a known contributor to failure. Recent computational modeling suggests that veins can more successfully adapt to an increase in mechanical load if the rate of loading is gradual. Applying an external wrap or support at the time of surgery is one way to reduce the transmural load, and this approach has improved performance relative to an unsupported vein graft in several animal studies. Yet, a clinical trial in humans has shown benefits and drawbacks, and mechanisms by which an external wrap affects vein graft adaptation remain unknown. This study aims to elucidate such mechanisms using a multimodal experimental and computational data collection pipeline. We quantify morphometry using magnetic resonance imaging, mechanics using biaxial testing, hemodynamics using computational fluid dynamics, structure using histology, and transcriptional changes using bulk RNA-sequencing in an ovine carotid-jugular interposition vein graft model, without and with an external biodegradable wrap that allows loads to increase gradually. We show that a biodegradable external wrap promotes luminal uniformity, physiological wall shear stress, and a consistent vein graft phenotype, namely, it prevents over-distension, over-thickening, intimal hyperplasia, and inflammation, and it preserves mechanotransduction. These mechanobiological insights into vein graft adaptation in the presence of an external support can inform computational growth and remodeling models of external support and facilitate design and manufacturing of next-generation external wrapping devices. STATEMENT OF SIGNIFICANCE: External mechanical support is emerging as a promising technology to prevent vein graft failure following coronary bypass graft surgery. While variants of this technology are currently under investigation in clinical trials, the fundamental mechanisms of adaptation remain poorly understood. We employ an ovine carotid-jugular interposition vein graft model, with and without an external biodegradable wrap to provide mechanical support, and probe vein graft adaptation using a multimodal experimental and computational data collection pipeline. We quantify morphometry using magnetic resonance imaging, mechanics using biaxial testing, fluid flow using computational fluid dynamics, vascular composition and structure using histology, and transcriptional changes using bulk RNA sequencing. We show that the wrap mitigates vein graft failure by promoting multiple adaptive mechanisms (across biological scales).


Assuntos
Mecanotransdução Celular , Túnica Íntima , Animais , Artérias Carótidas/patologia , Artérias Carótidas/cirurgia , Humanos , Hiperplasia/patologia , RNA , Ovinos , Túnica Íntima/patologia , Veias/patologia
10.
Int J Numer Method Biomed Eng ; 38(6): e3597, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344280

RESUMO

The lack of mechanically effective contraction of the left atrium (LA) during atrial fibrillation (AF) disturbs blood flow, increasing the risk of thrombosis and ischemic stroke. Thrombosis is most likely in the left atrial appendage (LAA), a small narrow sac where blood is prone to stagnate. Slow flow promotes the formation of erythrocyte aggregates in the LAA, also known as rouleaux, causing viscosity gradients that are usually disregarded in patient-specific simulations. To evaluate these non-Newtonian effects, we built atrial models derived from 4D computed tomography scans of patients and carried out computational fluid dynamics simulations using the Carreau-Yasuda constitutive relation. We examined six patients, three of whom had AF and LAA thrombosis or a history of transient ischemic attacks (TIAs). We modeled the effects of hematocrit and rouleaux formation kinetics by varying the parameterization of the Carreau-Yasuda relation and modulating non-Newtonian viscosity changes based on residence time. Comparing non-Newtonian and Newtonian simulations indicates that slow flow in the LAA increases blood viscosity, altering secondary swirling flows and intensifying blood stasis. While some of these effects are subtle when examined using instantaneous metrics like shear rate or kinetic energy, they are manifested in the blood residence time, which accumulates over multiple heartbeats. Our data also reveal that LAA blood stasis worsens when hematocrit increases, offering a potential new mechanism for the clinically reported correlation between hematocrit and stroke incidence. In summary, we submit that hematocrit-dependent non-Newtonian blood rheology should be considered when calculating patient-specific blood stasis indices by computational fluid dynamics.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Trombose , Átrios do Coração , Humanos , Reologia/métodos , Trombose/complicações
11.
Atherosclerosis ; 349: 144-150, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35144769

RESUMO

BACKGROUND AND AIMS: Lipoprotein(a) [Lp(a)] is causally associated with aortic valve stenosis (AS) but Lp(a) testing among AS patients is not broadly incorporated into clinical practice. We evaluated trends in Lp(a) testing in an academic medical center. METHODS: Educational efforts and adding Lp(a) to the lipid panel on the electronic medical record (EMR) and pre-procedure order sets were used to increase awareness of Lp(a) as a risk factor in AS. Medical records at University of California San Diego Health (UCSDH) were analyzed from 2010 to 2020 to define the yearly frequency of first time Lp(a) testing in patients with diagnosis codes for AS or undergoing transcatheter aortic valve replacement (TAVR). RESULTS: Lp(a) testing for any indication increased over 5-fold from 2010 to 2020. A total of 3808 patients had a diagnosis of AS and 417 patients had TAVR. Lp(a) levels >30 mg/dL were present in 37% of AS and 35% of TAVR patients. The rates of Lp(a) testing in AS and TAVR were 14.0% and 65.7%, respectively. In AS, Lp(a) testing increased over time from 8.5% in 2010, peaking at 24.2% in 2017, and declining to 13.9% in 2020 (p < 0.001 for trend). Following implementation of EMR order-sets in 2016, Lp(a) testing in TAVR cases increased to a peak of 88.5% in 2018. CONCLUSIONS: Elevated Lp(a) is prevalent in AS and TAVR patients. Implementation of educational efforts and practice pathways resulted in increased Lp(a) testing in patients with AS. This study represents a paradigm that may allow increased global awareness of Lp(a) as a risk factor for AS.


Assuntos
Estenose da Valva Aórtica , Implante de Prótese de Valva Cardíaca , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/epidemiologia , Estenose da Valva Aórtica/cirurgia , Implante de Prótese de Valva Cardíaca/métodos , Humanos , Lipoproteína(a) , Prevalência , Fatores de Risco , Resultado do Tratamento
12.
Front Cardiovasc Med ; 9: 1009445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588550

RESUMO

Introduction: 4D cardiac CT (cineCT) is increasingly used to evaluate cardiac dynamics. While echocardiography and CMR have demonstrated the utility of longitudinal strain (LS) measures, measuring LS from cineCT currently requires reformatting the 4D dataset into long-axis imaging planes and delineating the endocardial boundary across time. In this work, we demonstrate the ability of a recently published deep learning framework to automatically and accurately measure LS for detection of wall motion abnormalities (WMA). Methods: One hundred clinical cineCT studies were evaluated by three experienced cardiac CT readers to identify whether each AHA segment had a WMA. Fifty cases were used for method development and an independent group of 50 were used for testing. A previously developed convolutional neural network was used to automatically segment the LV bloodpool and to define the 2, 3, and 4 CH long-axis imaging planes. LS was measured as the perimeter of the bloodpool for each long-axis plane. Two smoothing approaches were developed to avoid artifacts due to papillary muscle insertion and texture of the endocardial surface. The impact of the smoothing was evaluated by comparison of LS estimates to LV ejection fraction and the fractional area change of the corresponding view. Results: The automated, DL approach successfully analyzed 48/50 patients in the training cohort and 47/50 in the testing cohort. The optimal LS cutoff for identification of WMA was -21.8, -15.4, and -16.6% for the 2-, 3-, and 4-CH views in the training cohort. This led to correct labeling of 85, 85, and 83% of 2-, 3-, and 4-CH views, respectively, in the testing cohort. Per-study accuracy was 83% (84% sensitivity and 82% specificity). Smoothing significantly improved agreement between LS and fractional area change (R 2: 2 CH = 0.38 vs. 0.89 vs. 0.92). Conclusion: Automated LV blood pool segmentation and long-axis plane delineation via deep learning enables automatic LS assessment. LS values accurately identify regional wall motion abnormalities and may be used to complement standard visual assessments.

13.
Semin Thorac Cardiovasc Surg ; 34(2): 521-532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33711465

RESUMO

Cardiothoracic surgeons are faced with a choice of different revascularization techniques and diameters for saphenous vein grafts (SVG) in coronary artery bypass graft surgery . Using computational simulations, we virtually investigate the effect of SVG geometry on hemodynamics of both venous grafts and the target coronary arteries. We generated patient-specific 3-dimensional anatomic models of coronary artery bypass graft surgery patients and quantified mechanical stimuli. We performed virtual surgery on 3 patient-specific models by modifying the geometry vein grafts to reflect single, Y, and sequential surgical configurations with SVG diameters ranging from 2 mm to 5 mm. Our study demonstrates that the coronary artery runoffs are relatively insensitive to the choice of SVG revascularization geometry. We observe a 10% increase in runoff when the SVG diameter is changed from 2 mm to 5 mm. The wall shear stress of SVG increases dramatically when the diameter drops, following an inverse power scaling with diameter. For a fixed diameter, the average wall shear stress on the vein graft varies in ascending order as single, Y, and sequential graft in the patient cohort. The runoff to the target coronary arteries changes marginally due to the choice of graft configuration or diameter. The shear stress on the vein graft depends on both flow rate and diameter and follows an inverse power scaling consistent with a Poiseuille flow assumption. Given the similarity in runoff with different surgical configurations, choices of SVG geometries can be informed by propensity for graft failure using shear stress evaluations.


Assuntos
Ponte de Artéria Coronária , Veia Safena , Angiografia Coronária , Ponte de Artéria Coronária/efeitos adversos , Ponte de Artéria Coronária/métodos , Humanos , Veia Safena/transplante , Resultado do Tratamento , Grau de Desobstrução Vascular
14.
Int J Cardiol ; 348: 90-94, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921901

RESUMO

BACKGROUND: We aimed to evaluate for occult systolic dysfunction and the effect of methamphetamine cessation among patients with methamphetamine use (MU) and heart failure with preserved ejection fraction (HFpEF). METHODS: A retrospective cohort of patients with HFpEF with serial echocardiograms was stratified by MU and evaluated using myocardial strain analysis on echocardiograms at baseline and 1 year to measure global longitudinal strain (GLS). Contemporaneous controls with an ICD diagnosis of HF within 3 days of an MU case were chosen. RESULTS: Patients with MU (n = 31) were younger (49 ± 10 vs 59 ± 16 years, p < 0.01) and more frequently male (55% vs 26%, p = 0.04) than controls (n = 23). There was no baseline difference in ejection fraction (EF) (median 66% [IQR 58,71%] vs 62% [56,69%], p = 0.33) or GLS (-13.0% [-16.3,-10.9%] vs -14.8% [-16.0,-11.3%], p = 0.40). At one-year follow-up, MU cessation (n = 15) was associated with improvement in GLS (absolute change -4.4% [-6.5,-1.7%], p < 0.01), while no absolute change was observed with continued MU (n = 16) (0.74% [-1.2,2.8%], p = 0.22) or controls without MU (-0.6% [-2.1,2.8%], p = 0.78). Of those with abnormal baseline GLS, normalization was observed in 46% with MU cessation, none with continued MU, and 5% of controls (p < 0.001). Among MU patients, improvement in GLS was associated with decreased HF admissions per year [HR 0.74 per 1% change in GLS, 95% CI 0.55,0.98, p = 0.04]. CONCLUSIONS: Patients with MU and HFpEF may have occult systolic dysfunction as demonstrated by abnormal GLS, and MU cessation at 1 year is associated with improvement in GLS and a reduction in risk of HF admissions.


Assuntos
Insuficiência Cardíaca , Metanfetamina , Disfunção Ventricular Esquerda , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/epidemiologia , Humanos , Masculino , Metanfetamina/efeitos adversos , Prognóstico , Estudos Retrospectivos , Volume Sistólico , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/epidemiologia , Função Ventricular Esquerda
15.
J Am Heart Assoc ; 10(23): e022544, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845930

RESUMO

Background Myocardial strain can identify subclinical left ventricular dysfunction in various cardiac diseases, but its association with clinical outcomes in genetic cardiomyopathies remains unknown. Herein, we assessed myocardial strain in patients with Danon disease (DD), a rare X-linked autophagic disorder that causes severe cardiac manifestations. Methods and Results Echocardiographic images were reviewed and used to calculate myocardial strain from a retrospective, international registry of patients with DD. Regression analyses were performed to evaluate for an association of global longitudinal strain (GLS) and ejection fraction with the composite outcome (death, ventricular assist device, heart transplantation, and implantable cardioverter defibrillator for secondary prevention). A total of 22 patients with DD (male 14 [63.6%], median age 16.5 years) had sufficient echocardiograms for analysis. Absolute GLS was reduced with a mean of 12.2% with an apical-sparing pattern observed. Univariable regression for GLS and composite outcome showed an odds ratio of 1.32 (95% CI, 1.02-1.71) with P=0.03. For receiver operating characteristic analysis, the areas under the curve for GLS and ejection fraction were 0.810 (P=0.02) and 0.605 (P=0.44), respectively. An absolute GLS cutoff of 10.0% yielded a true positive rate of 85.7% and false positive rate of 13.3%. Conclusions In this cohort of patients with DD, GLS may be a useful assessment of myocardial function and may predict clinical outcomes. This study highlights the potential use of myocardial strain phenotyping to monitor disease progression and potentially to predict clinical outcomes in DD and other genetic cardiomyopathies.


Assuntos
Doença de Depósito de Glicogênio Tipo IIb , Coração , Adolescente , Progressão da Doença , Ecocardiografia , Feminino , Doença de Depósito de Glicogênio Tipo IIb/genética , Doença de Depósito de Glicogênio Tipo IIb/patologia , Doença de Depósito de Glicogênio Tipo IIb/terapia , Coração/diagnóstico por imagem , Coração/fisiopatologia , Humanos , Masculino , Modelos Biológicos , Monitorização Fisiológica , Estudos Retrospectivos , Resultado do Tratamento
16.
PLoS Comput Biol ; 17(9): e1009331, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34491991

RESUMO

Coronary artery thrombosis is the major risk associated with Kawasaki disease (KD). Long-term management of KD patients with persistent aneurysms requires a thrombotic risk assessment and clinical decisions regarding the administration of anticoagulation therapy. Computational fluid dynamics has demonstrated that abnormal KD coronary artery hemodynamics can be associated with thrombosis. However, the underlying mechanisms of clot formation are not yet fully understood. Here we present a new model incorporating data from patient-specific simulated velocity fields to track platelet activation and accumulation. We use a system of Reaction-Advection-Diffusion equations solved with a stabilized finite element method to describe the evolution of non-activated platelets and activated platelet concentrations [AP], local concentrations of adenosine diphosphate (ADP) and poly-phosphate (PolyP). The activation of platelets is modeled as a function of shear-rate exposure and local concentration of agonists. We compared the distribution of activated platelets in a healthy coronary case and six cases with coronary artery aneurysms caused by KD, including three with confirmed thrombosis. Results show spatial correlation between regions of higher concentration of activated platelets and the reported location of the clot, suggesting predictive capabilities of this model towards identifying regions at high risk for thrombosis. Also, the concentration levels of ADP and PolyP in cases with confirmed thrombosis are higher than the reported critical values associated with platelet aggregation (ADP) and activation of the intrinsic coagulation pathway (PolyP). These findings suggest the potential initiation of a coagulation pathway even in the absence of an extrinsic factor. Finally, computational simulations show that in regions of flow stagnation, biochemical activation, as a result of local agonist concentration, is dominant. Identifying the leading factors to a pro-coagulant environment in each case-mechanical or biochemical-could help define improved strategies for thrombosis prevention tailored for each patient.


Assuntos
Anticoagulantes/uso terapêutico , Plaquetas/patologia , Biologia Computacional/métodos , Vasos Coronários/patologia , Síndrome de Linfonodos Mucocutâneos/complicações , Trombose/complicações , Difosfato de Adenosina/química , Coagulação Sanguínea , Simulação por Computador , Humanos , Síndrome de Linfonodos Mucocutâneos/sangue , Ativação Plaquetária , Agregação Plaquetária , Trombose/sangue , Trombose/tratamento farmacológico
17.
Int J Cardiol Heart Vasc ; 36: 100863, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34504945

RESUMO

BACKGROUND: Myocardial histology from autopsies of young adults with giant coronary artery aneurysms following Kawasaki disease (KD) shows bridging fibrosis beyond the territories supplied by the aneurysmal arteries. The etiology of this fibrosis is unknown, but persistent, low-level myocardial inflammation and microcirculatory ischemia are both possible contributing factors. To investigate the possibility of subclinical myocardial inflammation or fibrosis, we measured validated biomarkers in young adults with a remote history of KD. METHODS: We measured plasma calprotectin, galectin-3 (Gal-3), growth differentiation factor-15 (GDF-15), soluble ST2 (sST2), and serum procollagen type 1C-terminal propeptide (P1CP) in 91 otherwise healthy young adults with a remote history of KD and in 88 age-similar, healthy controls. KD subjects were stratified by coronary artery aneurysm (CAA) status and history of remote myocardial infarction (MI). RESULTS: After correction for multiple testing, calprotectin, Gal-3, and GDF-15 levels were significantly higher in subjects with persistent CAA (n = 26) compared with KD subjects with remodeled CAA (n = 20, p = 0.005, 0.001, 0.0036, respectively). In a multivariable regression model with CA status as the main predictor and adjusting for sex, MI history, and interval from KD onset, CA status was a significant predictor (Persistent CAA vs KD Normal CA) of calprotectin, Gal-3, GDF-15 and sST2 levels (p = 0.004, <0.001, 0.007, and 0.049, respectively). CONCLUSIONS: These results suggest that ongoing inflammation and fibrosis may be occurring in individuals with persistent CAA. Longitudinal follow-up is needed to clarify the clinical significance of these elevated biomarker levels in this patient population that requires life-long monitoring.

18.
Sci Rep ; 11(1): 8145, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854076

RESUMO

Conventional invasive diagnostic imaging techniques do not adequately resolve complex Type B and C coronary lesions, which present unique challenges, require personalized treatment and result in worsened patient outcomes. These lesions are often excluded from large-scale non-invasive clinical trials and there does not exist a validated approach to characterize hemodynamic quantities and guide percutaneous intervention for such lesions. This work identifies key biomarkers that differentiate complex Type B and C lesions from simple Type A lesions by introducing and validating a coronary angiography-based computational fluid dynamic (CFD-CA) framework for intracoronary assessment in complex lesions at ultrahigh resolution. Among 14 patients selected in this study, 7 patients with Type B and C lesions were included in the complex lesion group including ostial, bifurcation, serial lesions and lesion where flow was supplied by collateral bed. Simple lesion group included 7 patients with lesions that were discrete, [Formula: see text] long and readily accessible. Intracoronary assessment was performed using CFD-CA framework and validated by comparing to clinically measured pressure-based index, such as FFR. Local pressure, endothelial shear stress (ESS) and velocity profiles were derived for all patients. We validates the accuracy of our CFD-CA framework and report excellent agreement with invasive measurements ([Formula: see text]). Ultra-high resolution achieved by the model enable physiological assessment in complex lesions and quantify hemodynamic metrics in all vessels up to 1mm in diameter. Importantly, we demonstrate that in contrast to traditional pressure-based metrics, there is a significant difference in the intracoronary hemodynamic forces, such as ESS, in complex lesions compared to simple lesions at both resting and hyperemic physiological states [n = 14, [Formula: see text]]. Higher ESS was observed in the complex lesion group ([Formula: see text] Pa) than in simple lesion group ([Formula: see text] Pa). Complex coronary lesions have higher ESS compared to simple lesions, such differential hemodynamic evaluation can provide much the needed insight into the increase in adverse outcomes for such patients and has incremental prognostic value over traditional pressure-based indices, such as FFR.


Assuntos
Angiografia Coronária/métodos , Doença das Coronárias/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Simulação por Computador , Doença das Coronárias/classificação , Diagnóstico Diferencial , Hemodinâmica , Humanos , Resistência ao Cisalhamento
19.
Front Physiol ; 12: 596596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716763

RESUMO

Atrial fibrillation (AF) alters left atrial (LA) hemodynamics, which can lead to thrombosis in the left atrial appendage (LAA), systemic embolism and stroke. A personalized risk-stratification of AF patients for stroke would permit improved balancing of preventive anticoagulation therapies against bleeding risk. We investigated how LA anatomy and function impact LA and LAA hemodynamics, and explored whether patient-specific analysis by computational fluid dynamics (CFD) can predict the risk of LAA thrombosis. We analyzed 4D-CT acquisitions of LA wall motion with an in-house immersed-boundary CFD solver. We considered six patients with diverse atrial function, three with either a LAA thrombus (removed digitally before running the simulations) or a history of transient ischemic attacks (LAAT/TIA-pos), and three without a LAA thrombus or TIA (LAAT/TIA-neg). We found that blood inside the left atrial appendage of LAAT/TIA-pos patients had marked alterations in residence time and kinetic energy when compared with LAAT/TIA-neg patients. In addition, we showed how the LA conduit, reservoir and booster functions distinctly affect LA and LAA hemodynamics. Finally, fixed-wall and moving-wall simulations produced different LA hemodynamics and residence time predictions for each patient. Consequently, fixed-wall simulations risk-stratified our small cohort for LAA thrombosis worse than moving-wall simulations, particularly patients with intermediate LAA residence time. Overall, these results suggest that both wall kinetics and LAA morphology contribute to LAA blood stasis and thrombosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA