Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Infect Control Hosp Epidemiol ; 44(11): 1829-1833, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36912329

RESUMO

OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hospital outbreaks have been common and devastating during the coronavirus disease 2019 (COVID-19) pandemic. Understanding SARS-CoV-2 transmission in these environments is critical for preventing and managing outbreaks. DESIGN: Outbreak investigation through epidemiological mapping and whole-genome sequencing phylogeny. SETTING: Hospital in-patient medical unit outbreak in Toronto, Canada, from November 2020 to January 2021. PARTICIPANTS: The outbreak involved 8 patients and 10 staff and was associated with 3 patient deaths. RESULTS: Patients being cared for in geriatric chairs at the nursing station were at high risk for both acquiring and transmitting SARS-CoV-2 to other patients and staff. Furthermore, given the informal nature of these transmissions, they were not initially recognized, which led to further transmission and missing the opportunity for preventative COVID-19 therapies. CONCLUSIONS: During outbreak prevention and management, the risk of informal patient care settings, such as geriatric chairs, should be considered. During high-risk periods or during outbreaks, efforts should be made to care for patients in their rooms when possible.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/epidemiologia , SARS-CoV-2/genética , Surtos de Doenças/prevenção & controle , Canadá/epidemiologia , Hospitais
5.
Malar J ; 12: 105, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23506269

RESUMO

BACKGROUND: Severe falciparum malaria (SM) pathogenesis has been attributed, in part, to deleterious systemic host inflammatory responses to infection. High mobility group box 1 (HMGB1) protein is an important mediator of inflammation implicated in sepsis pathophysiology. METHODS: Plasma levels of HMGB1 were quantified in a cohort of febrile Ugandan children with Plasmodium falciparum infection, enrolled in a prospective observational case-controlled study, using a commercial enzyme-linked immunosorbent assay. The utility of HMGB1 to distinguish severe malaria (SM; n = 70) from uncomplicated malaria (UM; n = 33) patients and fatal (n = 21) versus non-fatal (n = 82) malaria, at presentation, was examined. Receiver operating characteristic curve analysis was used to assess the prognostic accuracy of HMGB1. The ability of P. falciparum-parasitized erythrocytes to induce HMGB1 from peripheral blood mononuclear cells was assessed in vitro. The effect of an anti-HMGB1 neutralizing antibody on disease outcome was assessed in the experimental Plasmodium berghei ANKA rodent parasite model of SM. Mortality and parasitaemia was assessed daily and compared to isotype antibody-treated controls. RESULTS: Elevated plasma HMGB1 levels at presentation were significantly associated with SM and a subsequent fatal outcome in paediatric patients with P. falciparum infection. In vitro, parasitized erythrocytes induced HMGB1 release from human peripheral blood mononuclear cells. Antibody-mediated neutralization of HMGB1 in the experimental murine model of severe malaria failed to reduce mortality. CONCLUSION: These data suggest that elevated HMGB1 is an informative prognostic marker of disease severity in human SM, but do not support HMGB1 as a viable target for therapeutic intervention in experimental murine SM.


Assuntos
Biomarcadores/sangue , Proteína HMGB1/sangue , Malária Falciparum/patologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Estudos de Casos e Controles , Criança , Pré-Escolar , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulinas Intravenosas/administração & dosagem , Lactente , Malária/tratamento farmacológico , Malária/patologia , Malária Falciparum/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Estudos Prospectivos , Curva ROC , Resultado do Tratamento , Uganda
6.
PLoS One ; 6(11): e27714, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110737

RESUMO

The host immune response contributes to the onset and progression of severe malaria syndromes, such as cerebral malaria. Adjunctive immunomodulatory strategies for severe malaria may improve clinical outcome beyond that achievable with artemisinin-based therapy alone. Here, we report that prophylaxis with inhaled nitric oxide significantly reduced systemic inflammation (lower TNF, IFNγ and MCP-1 in peripheral blood) and endothelial activation (decreased sICAM-1 and vWF, and increased angiopoeitin-1 levels in peripheral blood) in an experimental cerebral malaria model. Mice that received inhaled nitric oxide starting prior to infection had reduced parasitized erythrocyte accumulation in the brain, decreased brain expression of ICAM-1, and preserved vascular integrity compared to control mice.Inhaled nitric oxide administered in combination with artesunate, starting as late as 5.5 days post-infection, improved survival over treatment with artesunate alone (70% survival in the artesunate only vs. 100% survival in the artesunate plus iNO group, p = 0.03). These data support the clinical investigation of inhaled nitric oxide as a novel adjunctive therapy in patients with severe malaria.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/parasitologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Malária Cerebral/tratamento farmacológico , Óxido Nítrico/administração & dosagem , Óxido Nítrico/farmacologia , Administração por Inalação , Animais , Artemisininas/farmacologia , Artesunato , Vasos Sanguíneos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Células Endoteliais/metabolismo , Células Endoteliais/parasitologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Molécula 1 de Adesão Intercelular/metabolismo , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Malária Cerebral/fisiopatologia , Masculino , Camundongos , Óxido Nítrico/uso terapêutico , Plasmodium berghei/patogenicidade , Análise de Sobrevida , Fatores de Tempo
7.
Mol Med ; 17(7-8): 717-25, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21556483

RESUMO

Cerebral malaria (CM) is associated with excessive inflammatory responses and endothelial activation. Sphingosine 1-phosphate (S1P) is a signaling sphingolipid implicated in regulating vascular integrity, inflammation and T-cell migration. We hypothesized that altered S1P signaling during malaria contributes to endothelial activation and inflammation, and show that plasma S1P levels were decreased in Ugandan children with CM compared with children with uncomplicated malaria. Using the Plasmodium berghei ANKA (PbA) model of experimental CM (ECM), we demonstrate that humanized S1P lyase (hS1PL)(-/-) mice with reduced S1P lyase activity (resulting in increased bio-available S1P) had improved survival compared with wild-type littermates. Prophylactic and therapeutic treatment of infected mice with compounds that modulate the S1P pathway and are in human trials for other conditions (FTY720 or LX2931) significantly improved survival in ECM. FTY720 treatment improved vascular integrity as indicated by reduced levels of soluble intercellular adhesion molecule (sICAM), increased angiopoietin 1 (Ang1) (regulator of endothelial quiescence) levels, and decreased Evans blue dye leakage into brain parenchyma. Furthermore, treatment with FTY720 decreased IFNγ levels in plasma as well as CD4(+) and CD8(+) T-cell infiltration into the brain. Finally, when administered during infection in combination with artesunate, FTY720 treatment resulted in increased survival to ECM. These findings implicate dysregulation of the S1P pathway in the pathogenesis of human and murine CM and suggest a novel therapeutic strategy to improve clinical outcome in severe malaria.


Assuntos
Aldeído Liases/metabolismo , Lisofosfolipídeos/metabolismo , Malária Cerebral/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Esfingosina/análogos & derivados , Aldeído Liases/antagonistas & inibidores , Aldeído Liases/genética , Animais , Antimaláricos/farmacologia , Artemisininas/farmacologia , Artesunato , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Moléculas de Adesão Celular/sangue , Criança , Pré-Escolar , Feminino , Cloridrato de Fingolimode , Humanos , Imidazóis/farmacologia , Imunossupressores/farmacologia , Lactente , Interferon gama/sangue , Lisofosfolipídeos/sangue , Malária Cerebral/tratamento farmacológico , Malária Cerebral/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oximas/farmacologia , Plasmodium berghei/efeitos dos fármacos , Propilenoglicóis/farmacologia , Esfingosina/sangue , Esfingosina/metabolismo , Esfingosina/farmacologia , Análise de Sobrevida , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA