Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Antibiotics (Basel) ; 12(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830303

RESUMO

The increase in carbapenem-resistant Enterobacterales (CRE) is mostly driven by the spread of carbapenemase-producing (CP) strains. In New Caledonia, the majority of carbapenemases found are IMP-type carbapenemases that are difficult to detect on routine selective media. In this study, a culture-based method with ertapenem selection is proposed to distinguish non-CRE, non-CP-CRE, and CP-CRE from samples with very high bacterial loads. Firstly, assays were carried out with phenotypically well-characterized ß-lactam-resistant Enterobacterales isolates. Then, this approach was applied to clinical and environmental samples. Presumptive CP-CRE isolates were finally identified, and the presence of a carbapenemase was assessed. In a collection of 27 phenotypically well-characterized ß-lactam-resistant Enterobacterales, an ertapenem concentration of 0.5 µg·mL-1 allowed distinguishing CRE from non-CRE. A concentration of 4 µg·mL-1 allowed distinguishing CP-CRE from non-CP-CRE after nine hours of incubation. These methods allowed isolating 18 CP-CRE from hospital effluents, including the first detection of a KPC in New Caledonia. All these elements show that this cost-effective strategy to distinguish ß-lactam-resistant Enterobacterales provides fast and reliable results. This could be applied in the Pacific islands or other resource-limited settings, where limited data are available.

2.
PLoS One ; 17(10): e0276488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264911

RESUMO

Dengue, Zika and chikungunya viruses cause significant human public health burdens in the world. These arboviruses are transmitted by vector mosquito species notably Aedes aegypti and Aedes albopictus. In the Pacific region, more vector species of arboviruses belonging to the Scutellaris Group are present. Due to the expansion of human travel and international trade, the threat of their dispersal in other world regions is on the rise. Strengthening of entomological surveillance ensuring rapid detection of introduced vector species is therefore required in order to avoid their establishment and the risk of arbovirus outbreaks. This surveillance relies on accurate species identification. The aim of this study was to assess the use of the Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) as a tool for an international identification and surveillance of these mosquito vectors of arboviruses. Field-mosquitoes belonging to 8 species (Ae. aegypti, Ae. albopictus, Aedes polynesiensis, Aedes scutellaris, Aedes pseudoscutellaris, Aedes malayensis, Aedes futunae and Culex quinquefasciatus) from 6 countries in the Pacific, Asian and Madagascar, were included in this study. Analysis provided evidence that a MALDI-TOF database created using mosquitoes from the Pacific region allowed suitable identification of mosquito species from the other regions. This technic was as efficient as the DNA sequencing method in identifying mosquito species. Indeed, with the exception of two Ae. pseudoscutellaris, an exact species identification was obtained for all individual mosquitoes. These findings highlight that the MALDI-TOF MS is a promising tool that could be used for a global comprehensive arbovirus vector surveillance.


Assuntos
Aedes , Arbovírus , Dengue , Infecção por Zika virus , Zika virus , Humanos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Comércio , Internacionalidade , Mosquitos Vetores , Arbovírus/genética
3.
J Glob Antimicrob Resist ; 30: 363-369, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835352

RESUMO

OBJECTIVES: Since 2014, Staphylococcus aureus methicillin resistance has been rapidly increasing in New Caledonia and is associated with potential serious clinical repercussions. In the present study, we investigated the epidemiology of methicillin-resistant S. aureus (MRSA) in New Caledonia and the possible emergence of a particular clonal strain. METHODS: An overview of the distribution of MRSA in New Caledonia in 2019 is presented. We collected and analysed 171 clinical MRSA isolates from New Caledonia medical laboratories during August and September 2019. Among this collection, 49 representative isolates were analyzed by the French National Reference Center for Staphylococci using the StaphyType DNA microarray, allowing genetic characterization of the isolates. RESULTS: Among the 1144 S. aureus isolated over the year 2019, 442 isolates (39%) were resistant to methicillin, and 62% of these isolates were resistant to fusidic acid (FA). During the inclusion period, FA resistance rate was similar (60%). Genetic characterization evidenced CC6 as the predominant clonal complex (70%) with 26 isolates (53%) identified as CC6-MRSA-[IV+fus] (PVL+). CONCLUSIONS: These findings demonstrated a low diversity of MRSA in New Caledonia, with the dominance of a clonal complex not reported previously. The frequent fusidic acid (FA) resistance in MRSA was associated with a high prevalence of fusC gene, suggesting that FA misuse contributed to driving the selection of this clone. Our findings suggest the recommendation to stop the topical use of FA to control the emergence of this severe MRSA clone and decrease the rate of MRSA in New Caledonia.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Células Clonais , Ácido Fusídico/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Nova Caledônia/epidemiologia , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/genética
4.
Transbound Emerg Dis ; 69(5): e2852-e2862, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35730517

RESUMO

Leptospirosis is a bacterial zoonosis that occurs in tropical and subtropical regions worldwide. Chiroptera are known to be a formidable reservoir of zoonotic pathogens, including leptospires. The epidemiology of leptospirosis in bats in the Pacific Islands is poorly known, both in terms of prevalence and in terms of the bacterial strains involved. A strong host specificity between leptospiral strains and their mammalian reservoir is recognized. This phenomenon has notably been studied recently in bat communities, providing strong evidence of co-evolution. In New Caledonia, a biodiversity hotspot where leptospirosis is endemic and enzootic, Chiroptera are the only indigenous terrestrial mammals. In this study, we aimed to investigate leptospires associated with three flying fox species in New Caledonia. Kidneys and urine samples of Pteropus spp. from captures and seizures were analysed. Among 254 flying foxes analysed, 24 harboured pathogenic leptospires corresponding to an observed prevalence of 9.45% with 15.8% on the Main Island and 4.3% on Loyalty Islands. The analysis of the rrs gene, lfb1, and MLST sequences evidenced four distinct clusters of undescribed strains, likely corresponding to undescribed species. All four strains belong to the Group I of pathogenic Leptospira spp., which includes Leptospira interrogans, Leptospira noguchii, and Leptospira kirschneri. We detected pathogenic leptospires in all three Pteropus spp. studied (including two endemic species) with no evidence of host specificity in two co-roosting species. For a better understanding of Leptospira-host co-evolution, notably to genetically characterize and evaluate the virulence of these original bat-associated leptospires, it is essential to improve isolation techniques. Flying foxes are traditionally hunted and eaten in New Caledonia, a massive cause of bat-human interactions. Our results should encourage vigilance during these contacts to limit the spillover risk of these pathogens to humans.


Assuntos
Quirópteros , Leptospira , Leptospirose , Animais , Quirópteros/microbiologia , Humanos , Leptospirose/epidemiologia , Leptospirose/microbiologia , Leptospirose/veterinária , Mamíferos/genética , Tipagem de Sequências Multilocus/veterinária , Nova Caledônia/epidemiologia
5.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34914572

RESUMO

Leptospira strains were isolated from freshwater sampled at four sites in Algeria and characterized by whole-genome sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The cells were spiral-shaped and motile. Phylogenetic and MALDI-TOF MS analyses showed that the strains can be clearly distinguished from the other described species in the genus Leptospira, therefore representing two novel species of the pathogen subclade P1 and two novel species of the saprophyte subclade S1. The names Leptospira ainlahdjerensis sp. nov. (type strain 201903070T=KIT0297T=CIP111912T), Leptospira ainazelensis sp. nov. (201903071T=KIT0298T=CIP111913T), Leptospira abararensis sp. nov. (201903074T=KIT0299T=CIP111914T) and Leptospira chreensis (201903075T=KIT0300T=CIP111915T) are proposed.


Assuntos
Água Doce/microbiologia , Leptospira , Filogenia , Argélia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Leptospira/classificação , Leptospira/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Sci Rep ; 11(1): 21355, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725401

RESUMO

The mosquito Aedes aegypti is the major vector of arboviruses like dengue, Zika and chikungunya viruses. Attempts to reduce arboviruses emergence focusing on Ae. aegypti control has proven challenging due to the increase of insecticide resistances. An emerging strategy which consists of releasing Ae. aegypti artificially infected with Wolbachia in natural mosquito populations is currently being developed. The monitoring of Wolbachia-positive Ae. aegypti in the field is performed in order to ensure the program effectiveness. Here, the reliability of the Matrix­Assisted Laser Desorption Ionization­Time Of Flight (MALDI­TOF) coupled with the machine learning methods like Convolutional Neural Network (CNN) to detect Wolbachia in field Ae. aegypti was assessed for the first time. For this purpose, laboratory reared and field Ae. aegypti were analyzed. The results showed that the CNN recognized Ae. aegypti spectral patterns associated with Wolbachia-infection. The MALDI-TOF coupled with the CNN (sensitivity = 93%, specificity = 99%, accuracy = 97%) was more efficient than the loop-mediated isothermal amplification (LAMP), and as efficient as qPCR for Wolbachia detection. It therefore represents an interesting method to evaluate the prevalence of Wolbachia in field Ae. aegypti mosquitoes.


Assuntos
Aedes/microbiologia , Mosquitos Vetores/microbiologia , Wolbachia/isolamento & purificação , Animais , Inteligência Artificial , Controle de Mosquitos/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Wolbachia/química
7.
Parasit Vectors ; 13(1): 359, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690083

RESUMO

BACKGROUND: Mosquito vectors cause a significant human public health burden through the transmission of pathogens. Due to the expansion of international travel and trade, the dispersal of these mosquito vectors and the pathogens they carry is on the rise. Entomological surveillance is therefore required which relies on accurate mosquito species identification. This study aimed to optimize the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for mosquito identification. METHODS: Aedes aegypti of the Bora-Bora strain and 11 field-sampled mosquito species were used in this study. Analyses were performed to study the impact of the trapping duration on mosquito identification with MALDI-TOF MS. The best preservation methods to use for short, medium and long-term preservation before MALDI-TOF MS analysis were also assessed. In addition, the number of specimens per species required for MALDI-TOF MS database creation was determined. The first MALDI-TOF database of New Caledonian mosquitoes was assembled and the optimal threshold for mosquito species identification according to the sensitivity and specificity of this technique was determined. RESULTS: This study showed that the identification scores decreased as the trapping duration increased. High identification scores were obtained for mosquitoes preserved on silica gel and cotton at room temperature and those frozen at - 20 °C, even after two months of preservation. In addition, the results showed that the scores increased according to the number of main spectrum patterns (MSPs) used until they reached a plateau at 5 MSPs for Ae. aegypti. Mosquitoes (n = 67) belonging to 11 species were used to create the MALDI-TOF reference database. During blind test analysis, 96% of mosquitoes tested (n = 224) were correctly identified. Finally, based on MALDI-TOF MS sensitivity and specificity, the threshold value of 1.8 was retained for a secure identification score. CONCLUSIONS: MALDI-TOF MS allows accurate species identification with high sensitivity and specificity and is a promising tool in public health for mosquito vector surveillance.


Assuntos
Culicidae/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aedes/classificação , Animais , Culex/classificação , Mosquitos Vetores/classificação , Nova Caledônia , Sensibilidade e Especificidade
8.
Methods Mol Biol ; 2134: 23-29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32632856

RESUMO

Medical microbiology has used phenotypical and metabolic criteria to identify bacterial pathogens for decades. However, no such criteria have been applied to identify leptospires at the species level. In the recent years, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry (MS) has emerged as new tool for the identification of bacterial species in the medical microbiology laboratory. This technology has rapidly gained more and more popularity. Actually, this technique is sensitive and economic, saving both labor and bench costs, but also rapid, significantly reducing turnaround time from isolation to identification. MALDI-ToF MS provides an unprecedented tool for the rapid identification of Leptospira at the species level.


Assuntos
Leptospira/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , Laboratórios , Leptospira/genética , Filogenia
9.
Methods Mol Biol ; 2134: 207-214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32632872

RESUMO

Biofilm formation in microtiter plates is certainly the most commonly used method to grow and study biofilm. This simple design is very popular due to its high-throughput screening capacities, low cost, and easy handling. In the protocol described here, we focus on the use of 96-well optically clear, polystyrene flat-bottom plate to study biofilm formation by Leptospira spp. and quantify the biofilm formation by crystal violet (CV) staining. We also describe an alternative method, based on phase contrast image analysis that we believe is more suitable for accurately quantifying biofilm growth by reducing handling of this fragile structure.


Assuntos
Técnicas Bacteriológicas/métodos , Biofilmes/crescimento & desenvolvimento , Violeta Genciana/química , Ensaios de Triagem em Larga Escala/métodos , Leptospira/crescimento & desenvolvimento , Programas de Rastreamento/métodos , Coloração e Rotulagem/métodos
10.
NPJ Biofilms Microbiomes ; 6(1): 24, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532998

RESUMO

The zoonotic bacterium Leptospira interrogans is the aetiological agent of leptospirosis, a re-emerging infectious disease that is a growing public health concern. Most human cases of leptospirosis result from environmental infection. Biofilm formation and its contribution to the persistence of virulent leptospires in the environment or in the host have scarcely been addressed. Here, we examined spatial and time-domain changes in biofilm production by L. interrogans. Our observations showed that biofilm formation in L. interrogans is a highly dynamic process and leads to a polarized architecture. We notably found that the biofilm matrix is composed of extracellular DNA, which enhances the biofilm's cohesiveness. By studying L. interrogans mutants with defective diguanylate cyclase and phosphodiesterase genes, we show that biofilm production is regulated by intracellular levels of bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and underpins the bacterium's ability to withstand a wide variety of simulated environmental stresses. Our present results show how the c-di-GMP pathway regulates biofilm formation by L. interrogans, provide insights into the environmental persistence of L. interrogans and, more generally, highlight leptospirosis as an environment-borne threat to human health.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/genética , Leptospira interrogans/fisiologia , Diester Fosfórico Hidrolases/genética , Fósforo-Oxigênio Liases/genética , Animais , Proteínas de Bactérias/genética , Zoonoses Bacterianas/microbiologia , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Mutação , Análise Espaço-Temporal , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA