Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Orphanet J Rare Dis ; 14(1): 96, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053163

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is a multisystem disease with prominent neurologic manifestations such as epilepsy, cognitive impairment and autism spectrum disorder. mTOR inhibitors have successfully been used to treat TSC-related manifestations in older children and adults. However, data on their safety and efficacy in infants and young children are scarce. The objective of this study is to assess the utility and safety of mTOR inhibitor treatment in TSC patients under the age of 2 years. RESULTS: A total of 17 children (median age at study inclusion 2.4 years, range 0-6; 12 males, 5 females) with TSC who received early mTOR inhibitor therapy were studied. mTOR inhibitor treatment was started at a median age of 5 months (range 0-19 months). Reasons for initiation of treatment were cardiac rhabdomyomas (6 cases), subependymal giant cell astrocytomas (SEGA, 5 cases), combination of cardiac rhabdomyomas and SEGA (1 case), refractory epilepsy (4 cases) and disabling congenital focal lymphedema (1 case). In all cases everolimus was used. Everolimus therapy was overall well tolerated. Adverse events were classified according to the Common Terminology Criteria of Adverse Events (CTCAE, Version 5.0). Grade 1-2 adverse events occurred in 12 patients and included mild transient stomatitis (2 cases), worsening of infantile acne (1 case), increases of serum cholesterol and triglycerides (4 cases), changes in serum phosphate levels (2 cases), increase of cholinesterase (2 cases), transient neutropenia (2 cases), transient anemia (1 case), transient lymphopenia (1 case) and recurrent infections (7 cases). No grade 3-4 adverse events were reported. Treatment is currently continued in 13/17 patients. Benefits were reported in 14/17 patients and included decrease of cardiac rhabdomyoma size and improvement of arrhythmia, decrease of SEGA size, reduction of seizure frequency and regression of congenital focal lymphedema. Despite everolimus therapy, two patients treated for intractable epilepsy are still experiencing seizures and another one treated for SEGA showed no volume reduction. CONCLUSION: This retrospective multicenter study demonstrates that mTOR inhibitor treatment with everolimus is safe in TSC patients under the age of 2 years and shows beneficial effects on cardiac manifestations, SEGA size and early epilepsy.


Assuntos
Serina-Treonina Quinases TOR/antagonistas & inibidores , Esclerose Tuberosa/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Criança , Pré-Escolar , Colesterol/sangue , Colinesterases/sangue , Epilepsia/tratamento farmacológico , Everolimo/uso terapêutico , Feminino , Humanos , Imunossupressores/uso terapêutico , Lactente , Recém-Nascido , Masculino , Estudos Multicêntricos como Assunto , Fosfatos/sangue , Estudos Retrospectivos , Triglicerídeos/sangue
2.
Sci Rep ; 7(1): 18028, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269751

RESUMO

Preterm birth incorporates an increased risk for cerebellar developmental disorders likely contributing to motor and cognitive abnormalities. Experimental evidence of cerebellar dysfunction in preterm subjects, however, is sparse. In this study, classical eyeblink conditioning was used as a marker of cerebellar dysfunction. Standard delay conditioning was investigated in 20 adults and 32 preschool children born very preterm. Focal lesions were excluded based on structural magnetic resonance imaging. For comparison, an equal number of matched term born healthy peers were tested. Subgroups of children (12 preterm, 12 controls) were retested. Preterm subjects acquired significantly less conditioned responses (CR) compared to controls with slower learning rates. A likely explanation for these findings is that preterm birth impedes function of the cerebellum even in the absence of focal cerebellar lesions. The present findings are consistent with the assumption that prematurity results in long-term detrimental effects on the integrity of the cerebellum. It cannot be excluded, however, that extra-cerebellar pathology contributed to the present findings.


Assuntos
Aprendizagem por Associação/fisiologia , Cerebelo/fisiopatologia , Condicionamento Palpebral/fisiologia , Extinção Psicológica/fisiologia , Adolescente , Cerebelo/diagnóstico por imagem , Feminino , Humanos , Lactente Extremamente Prematuro , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
4.
Am J Hum Genet ; 98(2): 310-21, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26833332

RESUMO

Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal glycosylation in plasma.


Assuntos
Complexo de Golgi/genética , Homeostase , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Exoma , Feminino , Fibroblastos/citologia , Glicosilação , Complexo de Golgi/metabolismo , Células HeLa , Heterozigoto , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Extremophiles ; 18(5): 853-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108363

RESUMO

Subseafloor sediment samples derived from a sediment core of 60 m length were used to enrich psychrophilic aerobic bacteria on cellulose, xylan, chitin, and starch. A variety of species belonging to Alpha- and Gammaproteobacteria and to Flavobacteria were isolated from sediment depths between 12 and 42 mbsf. Metagenomic DNA purified from the pooled enrichments was sequenced and analyzed for phylogenetic composition and presence of genes encoding carbohydrate-active enzymes. More than 200 open reading frames coding for glycoside hydrolases were identified, and more than 60 of them relevant for enzymatic degradation of lignocellulose. Four genes encoding ß-glucosidases with less than 52% identities to characterized enzymes were chosen for recombinant expression in Escherichia coli. In addition one endomannanase, two endoxylanases, and three ß-xylosidases were produced recombinantly. All genes could be actively expressed. Functional analysis revealed discrepancies and additional variability for the recombinant enzymes as compared to the sequence-based predictions.


Assuntos
Proteínas de Bactérias/genética , Celulases/genética , Flavobacteriaceae/genética , Gammaproteobacteria/genética , Sedimentos Geológicos/microbiologia , Metagenoma , Xilosidases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Celulases/metabolismo , Flavobacteriaceae/enzimologia , Gammaproteobacteria/enzimologia , Genes Bacterianos , Água do Mar/microbiologia , Xilosidases/metabolismo
6.
J Child Neurol ; 28(3): 321-31, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23329585

RESUMO

Knowledge on pediatric herpes simplex virus encephalitis is limited. Here we summarize 6 neonates and 32 children diagnosed by polymerase chain reaction (n = 37) or serological studies (n = 1), respectively. Diagnosis was difficult, as only 15 patients presented neurologic symptoms. Moreover, cerebrospinal fluid glucose, protein, and leukocytes were normal in 6 patients. Subsequently, all but 2 showed neurologic symptoms. Diffusion-weighted neuroimaging was the most sensitive early imaging method. Despite acyclovir treatment, 8 patients experienced early relapses, showing movement abnormalities, impaired vigilance, and seizures. Diffuse white matter changes, found in 3 of 5 relapse patients on neuroimaging, and a negative cerebrospinal fluid herpes simplex virus polymerase chain reaction suggested inflammatory processes. All relapse patients were again treated with acyclovir, and 3 responded to additional corticosteroid treatment. Whereas outcome after relapses was poor, overall outcome was good. No child died; 14 were asymptomatic at discharge, and neuroimaging remained normal in 7 of 30 patients studied.


Assuntos
Aciclovir/uso terapêutico , Antivirais/uso terapêutico , Encéfalo/virologia , Encefalite Viral/diagnóstico , Herpes Simples/diagnóstico , Fibras Nervosas Mielinizadas/virologia , Adolescente , Encéfalo/patologia , Criança , Pré-Escolar , Imagem de Difusão por Ressonância Magnética , Encefalite Viral/tratamento farmacológico , Encefalite Viral/patologia , Feminino , Herpes Simples/tratamento farmacológico , Herpes Simples/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Fibras Nervosas Mielinizadas/patologia , Estudos Prospectivos , Recidiva , Retratamento , Estudos Retrospectivos , Simplexvirus/isolamento & purificação , Resultado do Tratamento
7.
PLoS One ; 6(1): e14519, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21297863

RESUMO

Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed employing Roche's GS FLX Titanium technology and compared to a previous dataset obtained from the same community DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class, whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also identified additional taxa that were missed by the previous study, including members of the genera Streptococcus, Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus bourgensis. While rarefaction analyses still indicate incomplete coverage, examination of the GS FLX Titanium dataset resulted in the identification of additional genera and functional elements, providing a far more complete coverage of the community involved in anaerobic fermentative pathways leading to methane formation.


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Fermentação/genética , Metagenômica/métodos , Análise de Sequência de RNA/métodos , Classificação , Metano/biossíntese , Filogenia , RNA Ribossômico 16S/genética
8.
BMC Genomics ; 10: 555, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19930683

RESUMO

BACKGROUND: The next generation sequencing technologies provide new options to characterize the transcriptome and to develop affordable tools for functional genomics. We describe here an innovative approach for this purpose and demonstrate its potential also for non-model species. RESULTS: The method we developed is based on 454 sequencing of 3' cDNA fragments from a normalized library constructed from pooled RNAs to generate, through de novo reads assembly, a large catalog of unique transcripts in organisms for which a comprehensive collection of transcripts or the complete genome sequence, is not available. This "virtual transcriptome" provides extensive coverage depth, and can be used for the setting up of a comprehensive microarray based expression analysis. We evaluated the potential of this approach by monitoring gene expression during berry maturation in Vitis vinifera as if no other sequence information was available for this species. The microarray designed on the berries' transcriptome derived from half of a 454 run detected the expression of 19,609 genes, and proved to be more informative than one of the most comprehensive grape microarrays available to date, the GrapeArray 1.2 developed by the Italian-French Public Consortium for Grapevine Genome Characterization, which could detect the expression of 15,556 genes in the same samples. CONCLUSION: This approach provides a powerful method to rapidly build up an extensive catalog of unique transcripts that can be successfully used to develop a microarray for large scale analysis of gene expression in any species, without the need for prior sequence knowledge.


Assuntos
Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA/métodos , Sequência de Bases , Etiquetas de Sequências Expressas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Biblioteca Gênica , Genes de Plantas/genética , Dados de Sequência Molecular , Sondas de Oligonucleotídeos/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Vitis/genética , Vitis/crescimento & desenvolvimento
9.
BMC Genomics ; 9: 449, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18826580

RESUMO

BACKGROUND: Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. RESULTS: In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. CONCLUSION: The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.


Assuntos
Bordetella/genética , Bordetella/metabolismo , Bordetella/patogenicidade , Genoma Bacteriano , Proteínas de Bactérias/genética , Composição de Bases , Evolução Biológica , Bordetella bronchiseptica/genética , Bordetella parapertussis/genética , Bordetella pertussis/genética , Cromossomos Bacterianos , Genes Bacterianos , Biblioteca Genômica , Sequências Repetitivas Dispersas , Dados de Sequência Molecular , Sintenia , Virulência/genética , Fatores de Virulência de Bordetella/genética
10.
J Biotechnol ; 136(1-2): 54-64, 2008 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-18586057

RESUMO

Wastewater treatment plants (WWTPs) are a reservoir for bacteria harbouring antibiotic resistance plasmids. To get a comprehensive overview on the plasmid metagenome of WWTP bacteria showing reduced susceptibility to certain antimicrobial drugs an ultrafast sequencing approach applying the 454-technology was carried out. One run on the GS 20 System yielded 346,427 reads with an average read length of 104 bases resulting in a total of 36,071,493 bases sequence data. The obtained plasmid metagenome was analysed and functionally annotated by means of the Sequence Analysis and Management System (SAMS) software package. Known plasmid genes could be identified within the WWTP plasmid metagenome data set by BLAST searches using the NCBI Plasmid Database. Most abundant hits represent genes involved in plasmid replication, stability, mobility and transposition. Mapping of plasmid metagenome reads to completely sequenced plasmids revealed that many sequences could be assigned to the cryptic pAsa plasmids previously identified in Aeromonas salmonicida subsp. salmonicida and to the accessory modules of the conjugative IncU resistance plasmid pFBAOT6 of Aeromonas punctata. Matches of sequence reads to antibiotic resistance genes indicate that plasmids from WWTP bacteria encode resistances to all major classes of antimicrobial drugs. Plasmid metagenome sequence reads could be assembled into 605 contigs with a minimum length of 500 bases. Contigs predominantly encode plasmid survival functions and transposition enzymes.


Assuntos
Anti-Infecciosos/administração & dosagem , Bactérias Aeróbias/genética , Mapeamento Cromossômico/métodos , Farmacorresistência Bacteriana/genética , Genoma Bacteriano/genética , Plasmídeos/genética , Análise de Sequência de DNA/métodos , Microbiologia da Água , Bactérias Aeróbias/efeitos dos fármacos , Sequência de Bases , Biotecnologia/métodos , Resíduos Industriais , Dados de Sequência Molecular
11.
J Biotechnol ; 134(1-2): 33-45, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18304669

RESUMO

The complete genome sequence of the Xanthomonas campestris pv. campestris strain B100 was established. It consisted of a chromosome of 5,079,003bp, with 4471 protein-coding genes and 62 RNA genes. Comparative genomics showed that the genes required for the synthesis of xanthan and xanthan precursors were highly conserved among three sequenced X. campestris pv. campestris genomes, but differed noticeably when compared to the remaining four Xanthomonas genomes available. For the xanthan biosynthesis genes gumB and gumK earlier translational starts were proposed, while gumI and gumL turned out to be unique with no homologues beyond the Xanthomonas genomes sequenced. From the genomic data the biosynthesis pathways for the production of the exopolysaccharide xanthan could be elucidated. The first step of this process is the uptake of sugars serving as carbon and energy sources wherefore genes for 15 carbohydrate import systems could be identified. Metabolic pathways playing a role for xanthan biosynthesis could be deduced from the annotated genome. These reconstructed pathways concerned the storage and metabolization of the imported sugars. The recognized sugar utilization pathways included the Entner-Doudoroff and the pentose phosphate pathway as well as the Embden-Meyerhof pathway (glycolysis). The reconstruction indicated that the nucleotide sugar precursors for xanthan can be converted from intermediates of the pentose phosphate pathway, some of which are also intermediates of glycolysis or the Entner-Doudoroff pathway. Xanthan biosynthesis requires in particular the nucleotide sugars UDP-glucose, UDP-glucuronate, and GDP-mannose, from which xanthan repeat units are built under the control of the gum genes. The updated genome annotation data allowed reconsidering and refining the mechanistic model for xanthan biosynthesis.


Assuntos
Genoma Bacteriano , Polissacarídeos Bacterianos/biossíntese , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência de DNA
12.
J Bacteriol ; 190(6): 2138-49, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18192381

RESUMO

Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil.


Assuntos
Actinobacteria/genética , DNA Bacteriano/genética , Genoma Bacteriano , Solanum lycopersicum/microbiologia , Actinobacteria/patogenicidade , Composição de Bases/genética , DNA Bacteriano/química , Eletroforese em Gel de Campo Pulsado , Genes Bacterianos/genética , Ilhas Genômicas/genética , Modelos Genéticos , Dados de Sequência Molecular , Óperon/genética , Plasmídeos/genética , Análise de Sequência de DNA , Serina Endopeptidases/genética
13.
Nat Biotechnol ; 25(11): 1281-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17965706

RESUMO

The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the genus. The circular genome, comprising 13,033,779 base pairs, is the largest bacterial genome sequenced to date. No global synteny with the genome of Myxococcus xanthus is apparent, revealing an unanticipated level of divergence between these myxobacteria. A large percentage of the genome is devoted to regulation, particularly post-translational phosphorylation, which probably supports the strain's complex, social lifestyle. This regulatory network includes the highest number of eukaryotic protein kinase-like kinases discovered in any organism. Seventeen secondary metabolite loci are encoded in the genome, as well as many enzymes with potential utility in industry.


Assuntos
Genoma Bacteriano/genética , Myxococcales/genética , Myxococcales/metabolismo , Sequência de Bases , Biotecnologia , Dados de Sequência Molecular , Myxococcales/classificação , Filogenia , Análise de Sequência de DNA
14.
Nat Biotechnol ; 24(11): 1385-91, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17057704

RESUMO

Azoarcus sp. strain BH72, a mutualistic endophyte of rice and other grasses, is of agrobiotechnological interest because it supplies biologically fixed nitrogen to its host and colonizes plants in remarkably high numbers without eliciting disease symptoms. The complete genome sequence is 4,376,040-bp long and contains 3,992 predicted protein-coding sequences. Genome comparison with the Azoarcus-related soil bacterium strain EbN1 revealed a surprisingly low degree of synteny. Coding sequences involved in the synthesis of surface components potentially important for plant-microbe interactions were more closely related to those of plant-associated bacteria. Strain BH72 appears to be 'disarmed' compared to plant pathogens, having only a few enzymes that degrade plant cell walls; it lacks type III and IV secretion systems, related toxins and an N-acyl homoserine lactones-based communication system. The genome contains remarkably few mobile elements, indicating a low rate of recent gene transfer that is presumably due to adaptation to a stable, low-stress microenvironment.


Assuntos
Azoarcus/genética , Azoarcus/fisiologia , Genoma Bacteriano/genética , Família Multigênica/genética , Fixação de Nitrogênio/genética , Carbono/metabolismo , Biblioteca Genômica , Ferro/metabolismo , Dados de Sequência Molecular , Fixação de Nitrogênio/fisiologia , Oryza/microbiologia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA/métodos , Simbiose/genética , Simbiose/fisiologia
15.
Nat Biotechnol ; 24(8): 997-1004, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16878126

RESUMO

Alcanivorax borkumensis is a cosmopolitan marine bacterium that uses oil hydrocarbons as its exclusive source of carbon and energy. Although barely detectable in unpolluted environments, A. borkumensis becomes the dominant microbe in oil-polluted waters. A. borkumensis SK2 has a streamlined genome with a paucity of mobile genetic elements and energy generation-related genes, but with a plethora of genes accounting for its wide hydrocarbon substrate range and efficient oil-degradation capabilities. The genome further specifies systems for scavenging of nutrients, particularly organic and inorganic nitrogen and oligo-elements, biofilm formation at the oil-water interface, biosurfactant production and niche-specific stress responses. The unique combination of these features provides A. borkumensis SK2 with a competitive edge in oil-polluted environments. This genome sequence provides the basis for the future design of strategies to mitigate the ecological damage caused by oil spills.


Assuntos
Mapeamento Cromossômico/métodos , Genoma Bacteriano/genética , Halomonadaceae/genética , Halomonadaceae/metabolismo , Hidrocarbonetos/metabolismo , Sequência de Bases , Biodegradação Ambiental , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
16.
J Bacteriol ; 188(21): 7405-15, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16936040

RESUMO

We present the complete genome sequence of Listeria welshimeri, a nonpathogenic member of the genus Listeria. Listeria welshimeri harbors a circular chromosome of 2,814,130 bp with 2,780 open reading frames. Comparative genomic analysis of chromosomal regions between L. welshimeri, Listeria innocua, and Listeria monocytogenes shows strong overall conservation of synteny, with the exception of the translocation of an F(o)F(1) ATP synthase. The smaller size of the L. welshimeri genome is the result of deletions in all of the genes involved in virulence and of "fitness" genes required for intracellular survival, transcription factors, and LPXTG- and LRR-containing proteins as well as 55 genes involved in carbohydrate transport and metabolism. In total, 482 genes are absent from L. welshimeri relative to L. monocytogenes. Of these, 249 deletions are commonly absent in both L. welshimeri and L. innocua, suggesting similar genome evolutionary paths from an ancestor. We also identified 311 genes specific to L. welshimeri that are absent in the other two species, indicating gene expansion in L. welshimeri, including horizontal gene transfer. The species L. welshimeri appears to have been derived from early evolutionary events and an ancestor more compact than L. monocytogenes that led to the emergence of nonpathogenic Listeria spp.


Assuntos
DNA Bacteriano/genética , Evolução Molecular , Genoma Bacteriano , Listeria/genética , Análise de Sequência de DNA , Cromossomos Bacterianos/genética , DNA Bacteriano/química , Deleção de Genes , Ordem dos Genes , Transferência Genética Horizontal , Listeria monocytogenes/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Sintenia , Translocação Genética
17.
J Biotechnol ; 121(2): 174-91, 2006 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-16313990

RESUMO

Myxobacteria belonging to the genus Sorangium are known to produce a variety of biologically active secondary metabolites. Chivosazol is a macrocyclic antibiotic active against yeast, filamentous fungi and especially against mammalian cells. The compound specifically destroys the actin skeleton of eucaryotic cells and does not show activity against bacteria. Chivosazol contains an oxazole ring and a glycosidically bound 6-deoxyglucose (except for chivosazol F). In this paper we describe the biosynthetic gene cluster that directs chivosazol biosynthesis in the model strain Sorangium cellulosum So ce56. This biosynthetic gene cluster spans 92 kbp on the chromosome and contains four polyketide synthase genes and one hybrid polyketide synthase/nonribosomal peptide synthetase gene. An additional gene encoding a protein with similarity to different methyltransferases and presumably involved in post-polyketide modification was identified downstream of the core biosynthetic gene cluster. The chivosazol biosynthetic gene locus belongs to the recently identified and rapidly growing class of trans-acyltransferase polyketide synthases, which do not contain acyltransferase domains integrated into the multimodular megasynthetases.


Assuntos
Genes Bacterianos/genética , Ligases/genética , Macrolídeos/metabolismo , Complexos Multienzimáticos/genética , Família Multigênica/genética , Myxococcales/genética , Myxococcales/enzimologia
18.
J Bacteriol ; 187(21): 7254-66, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16237009

RESUMO

The gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is the causative agent of bacterial spot disease in pepper and tomato plants, which leads to economically important yield losses. This pathosystem has become a well-established model for studying bacterial infection strategies. Here, we present the whole-genome sequence of the pepper-pathogenic Xanthomonas campestris pv. vesicatoria strain 85-10, which comprises a 5.17-Mb circular chromosome and four plasmids. The genome has a high G+C content (64.75%) and signatures of extensive genome plasticity. Whole-genome comparisons revealed a gene order similar to both Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris and a structure completely different from Xanthomonas oryzae pv. oryzae. A total of 548 coding sequences (12.2%) are unique to X. campestris pv. vesicatoria. In addition to a type III secretion system, which is essential for pathogenicity, the genome of strain 85-10 encodes all other types of protein secretion systems described so far in gram-negative bacteria. Remarkably, one of the putative type IV secretion systems encoded on the largest plasmid is similar to the Icm/Dot systems of the human pathogens Legionella pneumophila and Coxiella burnetii. Comparisons with other completely sequenced plant pathogens predicted six novel type III effector proteins and several other virulence factors, including adhesins, cell wall-degrading enzymes, and extracellular polysaccharides.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Xanthomonas campestris/genética , Adesinas Bacterianas/genética , Composição de Bases , Cromossomos Bacterianos/genética , Coxiella burnetii/genética , Ordem dos Genes , Legionella pneumophila/genética , Dados de Sequência Molecular , Plasmídeos/genética , Polissacarídeos Bacterianos/genética , Transporte Proteico/genética , Sintenia , Virulência/genética , Fatores de Virulência/genética , Xanthomonas campestris/fisiologia
19.
FEMS Microbiol Lett ; 249(2): 233-40, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16006074

RESUMO

Azoarcus sp. strain BH72 is a Gram-negative proteobacterium of the beta subclass; it is a diazotrophic endophyte of graminaceous plants and can provide significant amounts of fixed nitrogen to its host plant Kallar grass. We aimed to obtain a physical map of the Azoarcus sp. strain BH72 chromosome to be directly used in functional analysis and as a part of an Azoarcus sp. BH72 genome project. A bacterial artificial chromosome (BAC) library was constructed and analysed. A representative physical map with a high density of marker genes was developed in which 64 aligned BAC clones covered almost the entire genome.


Assuntos
Azoarcus/genética , Genoma Bacteriano , Cromossomos Artificiais Bacterianos , Clonagem Molecular , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Biblioteca Gênica , Vetores Genéticos , Peso Molecular , Óperon/genética , RNA Bacteriano/genética , RNA Ribossômico/genética , Mapeamento por Restrição
20.
J Bacteriol ; 187(13): 4671-82, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15968079

RESUMO

Corynebacterium jeikeium is a "lipophilic" and multidrug-resistant bacterial species of the human skin flora that has been recognized with increasing frequency as a serious nosocomial pathogen. Here we report the genome sequence of the clinical isolate C. jeikeium K411, which was initially recovered from the axilla of a bone marrow transplant patient. The genome of C. jeikeium K411 consists of a circular chromosome of 2,462,499 bp and the 14,323-bp bacteriocin-producing plasmid pKW4. The chromosome of C. jeikeium K411 contains 2,104 predicted coding sequences, 52% of which were considered to be orthologous with genes in the Corynebacterium glutamicum, Corynebacterium efficiens, and Corynebacterium diphtheriae genomes. These genes apparently represent the chromosomal backbone that is conserved between the four corynebacteria. Among the genes that lack an ortholog in the known corynebacterial genomes, many are located close to transposable elements or revealed an atypical G+C content, indicating that horizontal gene transfer played an important role in the acquisition of genes involved in iron and manganese homeostasis, in multidrug resistance, in bacterium-host interaction, and in virulence. Metabolic analyses of the genome sequence indicated that the "lipophilic" phenotype of C. jeikeium most likely originates from the absence of fatty acid synthase and thus represents a fatty acid auxotrophy. Accordingly, both the complete gene repertoire and the deduced lifestyle of C. jeikeium K411 largely reflect the strict dependence of growth on the presence of exogenous fatty acids. The predicted virulence factors of C. jeikeium K411 are apparently involved in ensuring the availability of exogenous fatty acids by damaging the host tissue.


Assuntos
Antibacterianos/farmacologia , Genoma Bacteriano , Metabolismo dos Lipídeos , Composição de Bases , Corynebacterium/efeitos dos fármacos , Corynebacterium/genética , Corynebacterium/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Dados de Sequência Molecular , Pele/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA