Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
2.
ACS Appl Nano Mater ; 7(16): 18094-18105, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39206354

RESUMO

Single-layer molybdenum ditelluride (MoTe2) has attracted attention due to the smaller energy difference between the semiconducting (1H) and semimetallic (1T') phases with respect to other two-dimensional transition metal dichalcogenides (TMDs). Understanding the phenomenon of polymorphism between these structural phases is of great fundamental and practical importance. In this paper, we report a 1H to 1T' phase transition occurring during the chemical vapor deposition (CVD) synthesis of single-layer MoTe2 at 730 °C. The transformation originates at the heterocontact between monoclinic and hexagonal crystals and progresses to either yield a partial or complete 1H to 1T' phase transition. Microscopic and spectroscopic analyses of the MoTe2 crystals reveal the presence of Te vacancies and mirror twin boundaries (MTB) domains in the hexagonal phase. The experimental observations and theoretical simulations indicate that the combination of heterocontact formation and Te vacancies are relevant triggering mechanisms in the observed transformation. By advancing in the understanding and controlling of the direct synthesis of lateral 1T'/1H heterostructures, this work contributes to the development of MoTe2-based electronic and optoelectronic devices with low contact resistance.

3.
Nano Lett ; 24(34): 10496-10503, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38950105

RESUMO

Molybdenum disulfide (MoS2) is one of the most intriguing two-dimensional materials, and moreover, its single atomic defects can significantly alter the properties. These defects can be both imaged and engineered using spherical and chromatic aberration-corrected high-resolution transmission electron microscopy (CC/CS-corrected HRTEM). In a few-layer stack, several atoms are vertically aligned in one atomic column. Therefore, it is challenging to determine the positions of missing atoms and the damage cross-section, particularly in the not directly accessible middle layers. In this study, we introduce a technique for extracting subtle intensity differences in CC/CS-corrected HRTEM images. By exploiting the crystal structure of the material, our method discerns chalcogen vacancies even in the middle layer of trilayer MoS2. We found that in trilayer MoS2 the middle layer's damage cross-section is about ten times lower than that in the monolayer. Our findings could be essential for the application of few-layer MoS2 in nanodevices.

4.
Nanotechnology ; 35(43)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39074489

RESUMO

The optical properties of the direct-bandgap transition metal dichalcogenides (TMDCs) MoS2and WS2are heavily influenced by their atomic defect structure and substrate interaction. In this work we use low-voltage chromatic and spherical aberration (CC/CS)-corrected high-resolution transmission electron microscopy to simultaneously create and image chalcogen vacancies in TMDCs. However, correlating the defect structure, produced and analyzed using transmission electron microscopy (TEM), with optical spectroscopy often presents challenges because of very different fields of view and sample platforms involved. Here we employ a reverse transfer technique to transfer electron-irradiated single-layer MoS2and WS2from the TEM grid to various substrates for subsequent optical examination. The dynamics of defect creation are studied in atomic resolution on a separate sample, which allows to apply the derived statistics to larger irradiated areas on the other samples. The intensity of both the defect-bound exciton peak in photoluminescence (PL) and the defect-inducedLA(M) mode in Raman spectra increase with defect density. The best substrates for defect-density determination by optical spectroscopy are polystyrene for PL and SiC and Si/SiO2for Raman spectroscopy. These investigations represent an important step towards the quantification of defects using solely optical spectroscopy, paving the way for fast, reliable, and automatable optical quality control of optoelectronic devices.

5.
Micron ; 184: 103677, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878605

RESUMO

Atomically-resolved in-situ high-resolution transmission electron microscopy (HRTEM) imaging of the structural dynamics in organic materials remains a major challenge. This difficulty persists even with aberration-corrected instruments, as HRTEM images necessitate a high electron dose that is generally intolerable for organic materials. In this study, we report the in-situ HRTEM imaging of heat-induced structural dynamics in a benzenehexathiol-based two-dimensional conjugated metal-organic framework (2D c-MOF, i.e., Cu3(BHT)). Leveraging its hydrogen-free structure and high electrical conductivity, Cu3(BHT) exhibits high electron beam resistance. We demonstrate atomic resolution imaging at an 80 kV electron accelerating voltage using our Cc/Cs-corrected SALVE instrument. However, continuous electron irradiation eventually leads to its amorphization. Intriguingly, under heating in a MEMS holder, the Cu3(BHT) undergoes a phase transition to a new crystalline phase and its phase transition, occurring within the temperature range of 480 °C to 620 °C in dependence on the electron beam illumination. Using HRTEM and energy-dispersive X-ray mapping, we identify this new phase as CuS. Our findings provide insights into the mechanisms governing structural transitions in purposefully engineered structures, potentially pivotal for future endeavours involving the production of metal oxide/sulfide nanoparticles from MOF precursors.

6.
ACS Appl Mater Interfaces ; 16(20): 25953-25965, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716923

RESUMO

Layered oxides constitute one of the most promising cathode materials classes for large-scale sodium-ion batteries because of their high specific capacity, scalable synthesis, and low cost. However, their practical use is limited by their low energy density, physicochemical instability, and poor cycling stability. Aiming to mitigate these shortcomings, in this work, we synthesized polycrystalline (PC) and single-crystal (SC) P2-type Na0.67-δMn0.67Ni0.33O2 (NMNO) cathode materials through a solid-state route and evaluated their physicochemical and electrochemical performance. The SC-NMNO cathode with a large mean primary particle size (D50) of 12.7 µm was found to exhibit high cycling stability leading to 47% higher capacity retention than PC-NMNO after 175 cycles at 1C rate in the potential window 4.2-1.5 V. This could be attributed to the effective mitigation of parasitic side reactions at the electrode-electrolyte interface and suppressed intergranular cracking induced by anisotropic volume changes. This is confirmed by the lower volume variation of SC-NMNO (ΔV ∼ 1.0%) compared to PC-NMNO (ΔV ∼ 1.4%) upon charging to 4.2 V. Additionally, the SC-NMNO cathode displayed slightly higher thermal stability compared to PC-NMNO. Both cathodes exhibited good chemical stability against air and water exposure, thus enabling material storage/handling in the ambient atmosphere as well as making them suitable for aqueous processing. In this regard, PC-NMNO was investigated with two low-cost aqueous binders, carboxymethyl cellulose, and sodium trimetaphosphate, which exhibited higher binding strength and displayed excellent electrochemical performance compared to PVDF, which could potentially lead to significant cost reduction in electrode manufacturing.

7.
Nature ; 630(8018): 878-883, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718837

RESUMO

The properties of polycrystalline materials are often dominated by defects; two-dimensional (2D) crystals can even be divided and disrupted by a line defect1-3. However, 2D crystals are often required to be processed into films, which are inevitably polycrystalline and contain numerous grain boundaries, and therefore are brittle and fragile, hindering application in flexible electronics, optoelectronics and separation1-4. Moreover, similar to glass, wood and plastics, they suffer from trade-off effects between mechanical strength and toughness5,6. Here we report a method to produce highly strong, tough and elastic films of an emerging class of 2D crystals: 2D covalent organic frameworks (COFs) composed of single-crystal domains connected by an interwoven grain boundary on water surface using an aliphatic bi-amine as a sacrificial go-between. Films of two 2D COFs have been demonstrated, which show Young's moduli and breaking strengths of 56.7 ± 7.4 GPa and 73.4 ± 11.6 GPa, and 82.2 ± 9.1 N m-1 and 29.5 ± 7.2 N m-1, respectively. We predict that the sacrificial go-between guided synthesis method and the interwoven grain boundary will inspire grain boundary engineering of various polycrystalline materials, endowing them with new properties, enhancing their current applications and paving the way for new applications.

8.
Angew Chem Int Ed Engl ; 63(20): e202402417, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38489608

RESUMO

Functionalizing single-walled carbon nanotubes (SWCNTs) in a robust way that does not affect the sp2 carbon framework is a considerable research challenge. Here we describe how triiodide salts of positively charged macrocycles can be used not only to functionalize SWCNTs from the outside, but simultaneously from the inside. We employed disulfide exchange in aqueous solvent to maximize the solvophobic effect and therefore achieve a high degree of macrocycle immobilization. Characterization by Raman spectroscopy, EDX-STEM and HR-TEM clearly showed that serendipitously this wet-chemical functionalization procedure also led to the encapsulation of polyiodide chains inside the nanotubes. The resulting three-shell composite materials are redox-active and experience an intriguing interplay of electrostatic, solvophobic and mechanical effects that could be of interest for applications in energy storage.

9.
Nano Lett ; 24(10): 3014-3020, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427697

RESUMO

Knowledge of the atomic structure of layer-stacked two-dimensional conjugated metal-organic frameworks (2D c-MOFs) is an essential prerequisite for establishing their structure-property correlation. For this, atomic resolution imaging is often the method of choice. In this paper, we gain a better understanding of the main properties contributing to the electron beam resilience and the achievable resolution in the high-resolution TEM images of 2D c-MOFs, which include chemical composition, density, and conductivity of the c-MOF structures. As a result, sub-angstrom resolution of 0.95 Å has been achieved for the most stable 2D c-MOF of the considered structures, Cu3(BHT) (BHT = benzenehexathiol), at an accelerating voltage of 80 kV in a spherical and chromatic aberration-corrected TEM. Complex damage mechanisms induced in Cu3(BHT) by the elastic interactions with the e-beam have been explained using detailed ab initio molecular dynamics calculations. Experimental and calculated knock-on damage thresholds are in good agreement.

10.
Microsc Microanal ; 30(2): 294-305, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38507652

RESUMO

We present an efficient approach for electron ptychography based on a mathematical relationship that differs from that underlying the established algorithms of the ptychography iterative engine or the noniterative algorithms like the Wigner-distribution-deconvolution or the single-side-band method. Three variables are handled in this method-the transfer function of the objective lens, the object spectrum, and the diffraction wave whose phase is unknown. In the case of an aberration-corrected electron microscope, one is able to obtain a well-estimated transfer function of the lens. After reducing the number of three variables down to two, we construct an iterative loop between the object spectrum and the diffraction wave, which retrieves the object spectrum within a small number of iterations. We tested this object spectrum retrieval method on both a calculated and an experimental 4D-STEM datasets. By applying this method, we explore the influence of sampling, dose, and the size of illumination aperture on the reconstructed phase images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA