Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
J Antibiot (Tokyo) ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523145

RESUMO

The antimicrobial activity of tumescenamide C against the scab-forming S. scabiei NBRC13768 was confirmed with a potent IC50 value (1.5 µg/mL). Three tumescenamide C-resistant S. scabiei strains were generated to compare their gene variants. All three resistant strains contained nonsynonymous variants in genes related to cellobiose/cellotriose transport system components; cebF1, cebF2, and cebG2, which are responsible for the production of the phytotoxin thaxtomin A. Decrease in thaxtomin A production and the virulence of the three resistant strains were revealed by the LC/MS analysis and necrosis assay, respectively. Although the nonsynonymous variants were insufficient for identifying the molecular target of tumescenamide C, the cell wall component wall teichoic acid (WTA) was observed to bind significantly to tumescenamide C. Moreover, changes in the WTA contents were detected in the tumescenamide C-resistant strains. These results imply that tumescenamide C targets the cell wall system to exert antimicrobial effects on S. scabiei.

2.
Beilstein J Org Chem ; 20: 445-451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440174

RESUMO

The adenylation (A) domain is essential for non-ribosomal peptide synthetases (NRPSs), which synthesize various peptide-based natural products, including virulence factors, such as siderophores and genotoxins. Hence, the inhibition of A-domains could attenuate the virulence of pathogens. 5'-O-N-(Aminoacyl or arylacyl)sulfamoyladenosine (AA-AMS) is a bisubstrate small-molecule inhibitor of the A-domains of NRPSs. However, the bacterial cell permeability of AA-AMS is typically a problem owing to its high hydrophilicity. In this study, we investigated the influence of a modification of 2'-OH in the AMS scaffold with different functional groups on binding to target enzymes and bacterial cell penetration. The inhibitor 7 with a cyanomethyl group at 2'-OH showed desirable inhibitory activity against both recombinant and intracellular gramicidin S synthetase A (GrsA) in the gramicidin S-producer Aneurinibacillus migulanus ATCC 9999, providing an alternative scaffold to develop novel A-domain inhibitors.

3.
J Antibiot (Tokyo) ; 77(3): 189-192, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38200162

RESUMO

A novel antibiotic biosynthetic precursor of cezomycin, named precezomycin (1), was isolated from culture broth of actinomycete Kitasatospora putterlickiae 10-13. The planar structure was determined by 1D/2D NMR and HR(ESI)MS data analyses, and the absolute configurations were established by TDDFT calculation of ECD spectra. Precezomycin (1) exhibited moderate antibacterial activity against gram-positive bacteria including Staphylococcus aureus and Bacillus subtilis. The discovery of 1 extends the natural product family of cezomycin and provides a new insight into understanding the biosynthetic process of these polyether ionophore metabolites.


Assuntos
Actinobacteria , Calcimicina/análogos & derivados , Streptomyces , Streptomycetaceae , Streptomyces/metabolismo , Antibacterianos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular
4.
J Antibiot (Tokyo) ; 77(1): 66-70, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903880

RESUMO

Cancer cells including colorectal cancer cells are resistant to anoikis, an anchorage-independent programmed death, which enables metastasis and subsequent survival in a new tumor microenvironment. In this study, we identified a new anoikis inducer, amoxetamide A (1) with a ß-lactone moiety, that was produced by combined-culture of Amycolatopsis sp. 26-4 and mycolic acid-containing bacteria (MACB) Tsukamurella pulmonis TP-B0596. The structure of 1 including the stereochemistry of C8 was determined by MS and NMR spectroscopy and modified Mosher's method, and the absolute configurations of C11 and C12 were suggested as 11R and 12S, respectively, by GIAO NMR calculations. Amoxetamide A (1) exhibited anoikis-inducing activity in human colorectal cancer HT-29 cells in anchorage-independent culture conditions.


Assuntos
Actinobacteria , Neoplasias Colorretais , Humanos , Amycolatopsis , Anoikis , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral
5.
Eur J Pharmacol ; 960: 176156, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059445

RESUMO

Asparagine synthetase (ASNS) is a crucial enzyme for the de novo biosynthesis of endogenous asparagine (Asn), and ASNS shows the positive relationship with the growth of several solid tumors. Most of ASNS inhibitors are analogs of transition-state in ASNS reaction, but their low cell permeability hinders their anticancer activity. Therefore, novel ASNS inhibitors with a new pharmacophore urgently need to be developed. In this study, we established and applied a system for in vitro screening of ASNS inhibitors, and found a promising unique bisabolane-type meroterpenoid molecule, bisabosqual A (Bis A), able to covalently modify K556 site of ASNS protein. Bis A targeted ASNS to suppress cell proliferation of human non-small cell lung cancer A549 cells and exhibited a synergistic effect with L-asparaginase (L-ASNase). Mechanistically, Bis A promoted oxidative stress and apoptosis, while inhibiting autophagy, cell migration and epithelial-mesenchymal transition (EMT), impeding cancer cell development. Moreover, Bis A induced negative feedback pathways containing the GCN2-eIF2α-ATF4, PI3K-AKT-mTORC1 and RAF-MEK-ERK axes, but combination treatment of Bis A and rapamycin/torin-1 overcame the potential drug resistance triggered by mTOR pathways. Our study demonstrates that ASNS inhibition is promising for cancer chemotherapy, and Bis A is a potential lead ASNS inhibitor for anticancer development.


Assuntos
Aspartato-Amônia Ligase , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Asparagina/farmacologia , Asparagina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Aspartato-Amônia Ligase/metabolismo , Células A549 , Fosfatidilinositol 3-Quinases , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células
6.
Cell Death Discov ; 9(1): 467, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135680

RESUMO

IFN-alpha have been reported to suppress hepatitis B virus (HBV) cccDNA via APOBEC3 cytidine deaminase activity through interferon signaling. To develop a novel anti-HBV drug for a functional cure, we performed in silico screening of the binding compounds fitting the steric structure of the IFN-alpha-binding pocket in IFNAR2. We identified 37 compounds and named them in silico cccDNA modulator (iCDM)-1-37. We found that iCDM-34, a new small molecule with a pyrazole moiety, showed anti-HCV and anti-HBV activities. We measured the anti-HBV activity of iCDM-34 dependent on or independent of entecavir (ETV). iCDM-34 suppressed HBV DNA, pgRNA, HBsAg, and HBeAg, and also clearly exhibited additive inhibitory effects on the suppression of HBV DNA with ETV. We confirmed metabolic stability of iCDM-34 was stable in human liver microsomal fraction. Furthermore, anti-HBV activity in human hepatocyte-chimeric mice revealed that iCDM-34 was not effective as a single reagent, but when combined with ETV, it suppressed HBV DNA compared to ETV alone. Phosphoproteome and Western blotting analysis showed that iCDM-34 did not activate IFN-signaling. The transcriptome analysis of interferon-stimulated genes revealed no increase in expression, whereas downstream factors of aryl hydrocarbon receptor (AhR) showed increased levels of the expression. CDK1/2 and phospho-SAMHD1 levels decreased under iCDM-34 treatment. In addition, AhR knockdown inhibited anti-HCV activity of iCDM-34 in HCV replicon cells. These results suggest that iCDM-34 decreases the phosphorylation of SAMHD1 through CDK1/2, and suppresses HCV replicon RNA, HBV DNA, and pgRNA formation.

7.
Commun Chem ; 6(1): 249, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973971

RESUMO

The structural diversity of chemical libraries, which are systematic collections of compounds that have potential to bind to biomolecules, can be represented by chemical latent space. A chemical latent space is a projection of a compound structure into a mathematical space based on several molecular features, and it can express structural diversity within a compound library in order to explore a broader chemical space and generate novel compound structures for drug candidates. In this study, we developed a deep-learning method, called NP-VAE (Natural Product-oriented Variational Autoencoder), based on variational autoencoder for managing hard-to-analyze datasets from DrugBank and large molecular structures such as natural compounds with chirality, an essential factor in the 3D complexity of compounds. NP-VAE was successful in constructing the chemical latent space from large-sized compounds that were unable to be handled in existing methods, achieving higher reconstruction accuracy, and demonstrating stable performance as a generative model across various indices. Furthermore, by exploring the acquired latent space, we succeeded in comprehensively analyzing a compound library containing natural compounds and generating novel compound structures with optimized functions.

8.
Anal Methods ; 15(48): 6648-6655, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38009190

RESUMO

Aminobutyric acid has structural isomers (α-, ß-, and γ-aminobutyric acids) and enantiomers (D/L-forms) with various unique functions. Therefore, a quantitative method for determining the content of each aminobutyric acid must be developed. In general, quantitative simultaneous analysis of multiple compounds is conducted via high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). However, simultaneous separation and highly sensitive detection of all aminobutyric acids are complicated, so highly sensitive analytical methods for the separation and identification of each compound have not yet been established. We previously developed highly sensitive chiral resolution labeling reagents. Herein, we propose a highly sensitive analytical method for the simultaneous separation and identification of all aminobutyric acids via LC-MS and labeling with our original highly sensitive chiral resolution labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-L-valine-N,N-dimethylethylenediamine amide (L-FDVDA). The labeling reagent was completely bound to all aminobutyric acids through incubation overnight (>15 h) at 50 °C. Additionally, the labeled aminobutyric acids could be stored for at least 1 week at 4 °C. Furthermore, we demonstrated simultaneous separation and identification of aminobutyric acids in biological samples and foods through LC-MS using a C18 column after labeling with L-FDVDA. Our method is expected to be adopted for the analysis of the contents of all aminobutyric acids in biological and clinical samples as well as various foods.


Assuntos
Aminobutiratos , Ácido gama-Aminobutírico , Indicadores e Reagentes , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo
9.
Chem Pharm Bull (Tokyo) ; 71(11): 824-831, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37612063

RESUMO

D-Amino acids, which are present in small amounts in living organisms, are responsible for a variety of physiological functions. Some bioactive/biomolecular peptides also contain D-amino acids in their sequences; such peptides express different functions than peptides composed only of L-form amino acids. Among the 20 amino acids that make up proteins, threonine (Thr) and isoleucine (Ile) have two chiral carbons and thus have two enantiomers and diastereomers. These stereoisomers have been previously analyzed through HPLC using chiral columns or chiral resolution labeling reagents. However, the separation and identification of these stereoisomers are highly laborious and complicated. Herein, we propose an analytical method for the separation and identification of Ile stereoisomers through LC-MS using our original chiral resolution labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-L-valine-N,N-dimethylethylenediamine-amide (L-FDVDA) and a PBr column packed with pentabromobenzyl-modified silica gel. Twenty DL-amino acids including Thr stereoisomers (41 amino acids including glycine) were separated and identified using C18 column. Ile stereoisomers could be separated using not a C18 column but a PBr column. Additionally, we showed that peptides containing Thr and Ile stereoisomers can be accurately detected through labeling with L-FDVDA.


Assuntos
Aminoácidos , Isoleucina , Estereoisomerismo , Indicadores e Reagentes , Aminoácidos/química , Cromatografia Líquida de Alta Pressão/métodos , Aminas , Peptídeos
10.
J Med Chem ; 66(17): 12520-12535, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37638616

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are modulated by ligands presented on MHC class I-related proteins (MR1). These cells have attracted attention as potential drug targets because of their involvement in the initial response to infection and various disorders. Herein, we have established the MR1 presentation reporter assay system employing split-luciferase, which enables the efficient exploration of MR1 ligands. Using our screening system, we identified phenylpropanoid derivatives as MR1 ligands, including coniferyl aldehyde, which have an ability to inhibit the MR1-MAIT cell axis. Further, the structure-activity relationship study of coniferyl aldehyde analogs revealed the key structural features of ligands required for MR1 recognition. These results will contribute to identifying a broad range of endogenous and exogenous MR1 ligands and to developing novel MAIT cell modulators.


Assuntos
Acroleína , Bioensaio , Ligantes , Relação Estrutura-Atividade
11.
Analyst ; 148(6): 1209-1213, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779274

RESUMO

We developed a system to separate and identify racemised and isomerised aspartic acid (Asp) residues in amyloid ß (Aß) by labeling with an original chiral resolution labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-D-leucine-N,N-dimethylethylenediamine-amide (D-FDLDA). The racemised and isomerised Asp residues labeled with D-FDLDA in Aß fragments generated by digesting with trypsin and endoproteinase Glu-C were separated and identified by liquid chromatography-mass spectrometry (LC-MS) under simple gradient conditions. Furthermore, the labeled Aß fragments did not aggregate and remained stable at least for 1 week at 4 °C.


Assuntos
Peptídeos beta-Amiloides , Ácido Aspártico , Ácido Aspártico/química , Indicadores e Reagentes , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos
12.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220026, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633280

RESUMO

Non-ribosomal peptide synthetases (NRPSs) biosynthesize many pharmaceuticals and virulence factors. The biosynthesis of these natural peptide products from biosynthetic gene clusters depends on complex regulations in bacteria. However, our current knowledge of NRPSs is based on enzymological studies using full NRPS systems and/or a single NRPS domain in heterologous hosts. Chemical and/or biochemical strategies to capture the endogenous activities of NRPSs facilitate studies on NRPS cell biology in bacterial cells. Here, we describe a chemical scaffold for the rapid and selective photoaffinity labelling of NRPSs in purified systems, crude biological samples and living bacterial cells. We synthesized photoaffinity labelling probes coupled with 5'-O-N-(phenylalanyl)sulfamoyladenosine with clickable alkyl diazirine or trifluoromethyl phenyl diazirine. We found that a trifluoromethyl phenyl diazirine-based probe cross-linked the Phe-activating domain of a GrsA-NRPS with high selectivity and sensitivity at shorter ultraviolet (UV) irradiation times (less than 5 min) relative to a prototypical benzophenone-based probe. Our results demonstrated that this quick labelling protocol can prevent damage to proteins and cells caused by long UV irradiation times, providing a mild photoaffinity labelling method for biological samples. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Assuntos
Bactérias , Diazometano , Diazometano/metabolismo , Bactérias/genética , Peptídeo Sintases/química , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Família Multigênica
13.
Beilstein J Org Chem ; 18: 1560-1566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36474967

RESUMO

Longicatenamides A-D are cyclic hexapeptides isolated from the combined culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596. Because these peptides are not detected in the monoculture broth of the actinomycete, they are key tools for understanding chemical communication in the microbial world. Herein, we report the solid-phase total synthesis and structural confirmation of longicatenamide A. First, commercially unavailable building blocks were chemically synthesized with stereocontrol. Second, the peptide chain was elongated via Fmoc-based solid-phase peptide synthesis. Third, the peptide chain was cyclized in the solution phase, followed by simultaneous cleavage of all protecting groups to afford longicatenamide A. Chromatographic analysis corroborated the chemical structure of longicatenamide A. Furthermore, the antimicrobial activity of synthesized longicatenamide A was confirmed. The developed solid-phase synthesis is expected to facilitate the rapid synthesis of diverse synthetic analogues.

14.
iScience ; 25(12): 105659, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505930

RESUMO

FK506-binding protein with a molecular weight of 12 kDa (FKBP12) is a receptor of the immunosuppressive drugs, FK506 and rapamycin. The physiological functions of FKBP12 remain ambiguous because of its nonessentiality and multifunctionality. Here, we show that FKBP12 promotes the utilization of serine as a nitrogen source and regulates the isoleucine biosynthetic pathway in fission yeast. In screening for small molecules that inhibit serine assimilation, we found that the growth of fission yeast cells in medium supplemented with serine as the sole nitrogen source, but not in glutamate-supplemented medium, was suppressed by FKBP12 inhibitors. Knockout of FKBP12 phenocopied the action of these compounds in serine-supplemented medium. Metabolome analyses and genetic screens identified the threonine deaminase, Tda1, to be regulated downstream of FKBP12. Genetic and biochemical analyses unveiled the negative regulation of Tda1 by FKBP12. Our findings reveal new roles of FKBP12 in amino acid biosynthesis and nitrogen metabolism homeostasis.

15.
Eur J Pharmacol ; 935: 175321, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228744

RESUMO

Curcumin (aglycone curcumin) has antitumor properties in a variety of malignancies via the alteration of multiple cancer-related biological pathways; however, its clinical application has been hampered due to its poor bioavailability. To overcome this limitation, we have developed a synthesized curcumin ß-D-glucuronide sodium salt (TBP1901), a prodrug form of aglycone curcumin. In this study, we aimed to clarify the pharmacologic characteristics of TBP1901. In ß-glucuronidase (GUSB)-proficient mice, both curcumin ß-D-glucuronide and its active metabolite, aglycone curcumin, were detected in the blood after TBP1901 injection, whereas only curcumin ß-D-glucuronide was detected in GUSB-impaired mice, suggesting that GUSB plays a pivotal role in the conversion of TBP1901 into aglycone curcumin in vivo. TBP1901 itself had minimal antitumor effects in vitro, whereas it demonstrated significant antitumor effects in vivo. Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screen disclosed the genes associated with NF-κB signaling pathway and mitochondria were among the highest hit. In vitro, aglycone curcumin inhibited NF-kappa B signaling pathways whereas it caused production of reactive oxygen species (ROS). ROS scavenger, N-acetyl-L-cysteine, partially reversed antitumor effects of aglycone curcumin. In summary, TBP1901 can exert antitumor effects as a prodrug of aglycone curcumin through GUSB-dependent activation.


Assuntos
Curcumina , Pró-Fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Sistemas CRISPR-Cas/genética , Curcumina/farmacologia , Glucuronidase/metabolismo , Glucuronídeos/metabolismo , Glucuronídeos/farmacologia , Glucuronídeos/uso terapêutico , NF-kappa B/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
16.
J Antibiot (Tokyo) ; 75(12): 671-678, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207416

RESUMO

Targeting and eradicating cancer stem cells (CSCs), also termed tumor-initiating cells, are promising strategies for preventing cancer progression and recurrence. To identify candidate compounds targeting CSCs, we established a new screening strategy with colorectal CSC spheres and non-CSC spheres in three-dimensional (3D) culture system. Through chemical screening using our system with in-house microbial metabolite library, we identified polyether cation ionophores that selectively inhibited CSC sphere formation, whereas CSC spheres were resistant to conventional anticancer agents. One of the hit compounds, the most selective and effective microbial metabolite lenoremycin, decreased CSC populations via inducing reactive oxygen species production. This study demonstrated that our newly established screening system is useful for discovering agents that selectively eliminate CSCs.


Assuntos
Detecção Precoce de Câncer , Neoplasias , Ionóforos/farmacologia , Ionóforos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Éteres
17.
RSC Chem Biol ; 3(3): 312-319, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35359491

RESUMO

Nonribosomal peptide synthetases (NRPSs) are complex multi-modular enzymes containing catalytic domains responsible for the loading and incorporation of amino acids into natural products. These unique molecular factories can produce peptides with nonproteinogenic d-amino acids in which the epimerization (E) domain catalyzes the conversion of l-amino acids to d-amino acids, but its mechanism remains not fully understood. Here, we describe the development of pantetheine crosslinking probes that mimic the natural substrate l-Phe of the initiation module of tyrocidine synthetase, TycA, to elucidate and study the catalytic residues of the E domain. Mechanism-based crosslinking assays and MALDI-TOF MS were used to identify both H743 and E882 as the crosslinking site residues, demonstrating their roles as catalytic bases. Mutagenesis studies further validated these results and allowed the comparison of reactivity between the catalytic residues, concluding that glutamate acts as the dominant nucleophile in the crosslinking reaction, resembling the deprotonation of the Cα-H of amino acids in the epimerization reaction. The crosslinking probes employed in these studies provide new tools for studying the molecular details of E domains, as well as the potential to study C domains. In particular, they would elucidate key information for how these domains function and interact with their substrates in nature, further enhancing the knowledge needed to assist combinatorial biosynthetic efforts of NRPS systems to produce novel compounds.

18.
Methods Enzymol ; 665: 105-133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35379431

RESUMO

Peptide natural products produced by microorganisms have attracted considerable attention as ideal drug leads owing to their low toxicity and high specificity toward target proteins compared with small-sized molecules. These peptide drug leads possess unusual structural features that endow them with unique biological activities and ideal physicochemical properties. In particular, these peptides often have d-amino acids, and therefore the absolute configuration of the component amino acids must be determined during the structural elucidation of newly isolated peptide drug leads. Recently, we developed highly sensitive labeling reagents FDVDA and FDLDA for the structural determination of the component amino acids in peptides. In an LC-MS-based structural study of peptides, these reagents enabled us to detect infinitesimal amounts of amino acids derived from mild degradation of the samples; we named this method the highly sensitive-advanced Marfey's method (HS-advanced Marfey's method). Herein, we first report the synthesis of these reagents and the LC-MS protocols for highly sensitive analyses of amino acids. Second, we discuss applications of the design concept. Specifically, two other labeling reagents were synthesized and their performance in terms of detection sensitivity was evaluated. These investigations provide insights on the structure-property relationship of these labeling reagents and therefore facilitate future on-demand structural modifications of the reagents to enhance their hydrophobicity, stability, and affinity for use with specialized HPLC columns. Finally, we demonstrated the effectiveness of our highly sensitive labeling reagents by using them to detect component amino acids in peptide natural products.


Assuntos
Aminas , Aminoácidos , Aminas/química , Aminoácidos/química , Cromatografia Líquida , Indicadores e Reagentes , Estereoisomerismo
19.
Anal Bioanal Chem ; 414(14): 4039-4046, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384472

RESUMO

There are several reports of D-amino acids being the causative molecules of serious diseases, resulting in the formation of, for example, prion protein and amyloid ß. D-Amino acids in peptides and proteins are typically identified by sequencing each residue by Edman degradation or by hydrolysis with hydrochloric acid for amino acid analysis. However, these approaches can result in racemization of the L-form to the D-form by hydrolysis and long pre-treatment for hydrolysis. To address these problems, we aimed to identify the DL-forms of amino acids in peptides without hydrolysis. Here, we showed that the DL-forms in peptides which are difficult to separate on a chiral column can be precisely separated by labeling with 1-fluoro-2,4-dinitrophenyl-5-D-leucine-N,N-dimethylethylenediamine-amide (D-FDLDA). Additionally, the peptides could be quantitatively analyzed using the same labeling method as for amino acids. Furthermore, the detection sensitivity of a sample labeled with D-FDLDA was higher than that of the conventional reagents Nα-(5-fluoro-2,4-dinitrophenyl)-L-alaninamide (L-FDAA) and Nα-(5-fluoro-2,4-dinitrophenyl)-L-leucinamide (L-FDLA) used in Marfey's method. The proposed method for identifying DL-forms of amino acids in peptides is a powerful tool for use in organic chemistry, biochemistry, and medical science.


Assuntos
Aminoácidos , Peptídeos beta-Amiloides , Aminas , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão/métodos , Dinitrobenzenos/análise , Indicadores e Reagentes , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA