Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(12): 819, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38086796

RESUMO

The thioredoxin (TXN) system is an NADPH + H+/FAD redox-triggered effector that sustains homeostasis, bioenergetics, detoxifying drug networks, and cell survival in oxidative stress-related diseases. Elovanoid (ELV)-N34 is an endogenously formed lipid mediator in neural cells from omega-3 fatty acid precursors that modulate neuroinflammation and senescence gene programming when reduction-oxidation (redox) homeostasis is disrupted, enhancing cell survival. Limited proteolysis (LiP) screening of human retinal pigment epithelial (RPE) cells identified TXNRD1 isoforms 2, 3, or 5, the reductase of the TXN system, as an intracellular target of ELV-N34. TXNRD1 silencing confirmed that the ELV-N34 target was isoform 2 or 3. This lipid mediator induces TXNRD1 structure changes that modify the FAD interface domain, leading to its activity modulation. The addition of ELV-N34 decreased membrane and cytosolic TXNRD1 activity, suggesting localizations for the targeted reductase. These results show for the first time that the lipid mediator ELV-N34 directly modulates TXNRD1 activity, underling its protection in several pathologies when uncompensated oxidative stress (UOS) evolves.


Assuntos
Estresse Oxidativo , Tiorredoxina Redutase 1 , Humanos , Tiorredoxina Redutase 1/genética , Oxirredução , Isoformas de Proteínas/metabolismo , Citosol/metabolismo , Lipídeos
2.
Res Sq ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37502897

RESUMO

Cellular identity, developmental reorganization, genomic structure modulation, and susceptibility to diseases are determined by epigenomic regulation by multiple signaling interplay. Here we demonstrate that elovanoids (ELVs), mediators derived from very-long-chain polyunsaturated fatty acids (VLC-PUFAs, n-3, C > 28), and their precursors in neurons in culture overcome the damage triggered by oligomeric amyloid-beta (OAß), erastin (ferroptosis-dependent cell death), or other insults that target epigenomic signaling. We uncover that ELVs counteract damage targeting histones H3K9 and H3K27 methylation and acetylation; tau hyperphosphorylation (pThr181, pThr217, pThr231, and pSer202/pThr205 (AT8)); senescence gene programming (p16INK4a, p27KIP, p21CIP1, and p53); DNA methylation (DNAm) modifying enzymes: TET (DNA hydroxymethylase), DNA methyltransferase, DNA demethylase, and DNAm (5mC) phenotype. Moreover, ELVs revert OAß-triggered telomere length (TL) attrition as well as upregulation of telomerase reverse transcriptase (TERT) expression fostering dendrite protection and neuronal survival. Thus, ELVs modulate epigenomic resiliency by pleiotropic interrelated signaling.

3.
Cell Mol Neurobiol ; 43(3): 1077-1096, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35622188

RESUMO

Wnt5a triggers inflammatory responses and damage via NFkB/p65 in retinal pigment epithelial (RPE) cells undergoing uncompensated oxidative stress (UOS) and in experimental ischemic stroke. We found that Wnt5a-Clathrin-mediated uptake leads to NFkB/p65 activation and that Wnt5a is secreted in an exosome-independent fashion. We uncovered that docosahexaenoic acid (DHA) and its derivative, Neuroprotectin D1 (NPD1), upregulate c-Rel expression that, as a result, blunts Wnt5a abundance by competing with NFkB/p65 on the Wnt5a promoter A. Wnt5a increases in ischemic stroke penumbra and blood, while DHA reduces Wnt5a abundance with concomitant neuroprotection. Peptide inhibitor of Wnt5a binding, Box5, is also neuroprotective. DHA-decreased Wnt5a expression is concurrent with a drop in NFkB-driven inflammatory cytokine expression, revealing mechanisms after stroke, as in RPE cells exposed to UOS. Limiting the Wnt5a activity via Box5 reduces stroke size, suggesting neuroprotection pertinent to onset and progression of retinal degenerations and stroke consequences. NPD1 disrupts Wnt5a feedback loop at two sites: (1) decreasing FZD5, thus Wnt5a internalization, and (2) by enhancing cREL activity, which competes with p65/NFkB downstream endocytosis. As a result, Wnt5a expression is reduced, and so is its inflammatory signaling in RPE cells and neurons in ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Neuroproteção , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Proteína Wnt-5a , Receptores Frizzled/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA