Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 6(50): 34563-34571, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963941

RESUMO

An effective heterojunction with robust charge separation and enormous degradation efficiency is the major task for photocatalyst preparation. In this study, we have prepared the FeCo2O4-loaded g-C3N4 nanosheet by the sol-gel-assisted calcination method for photo-Fenton-like degradation under visible-light irradiation by activating persulfate. The nanocomposite exhibits a higher charge separation efficiency than pure g-C3N4 and FeCo2O4 for the degradation reaction against naproxen drugs. An effective interaction between the nanoparticles increases the degradation efficiency up to 91% with a synergistic index of 73.62%. Moreover, the nanocomposite exhibits a 78% mineralization efficiency against the naproxen pollutant under visible-light irradiation. For practical implementation, the degradation reaction was tested with various pH values, different water sources (DI, lake, and tap water), and light sources (LED (visible)/direct sunlight (UV-visible)). Moreover, the possible degradation mechanism predicted by the elemental trapping experiment and the recycling experiment clearly revealed that the heterojunction composite has a high enough degradation stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA