Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559160

RESUMO

Infection with the helminth Schistosoma mansoni can cause exacerbated morbidity and mortality via a pathogenic host CD4 T cell-mediated immune response directed against parasite egg antigens, with T helper (Th) 17 cells playing a major role in the development of severe granulomatous hepatic immunopathology. The role of inflammasomes in intensifying disease has been reported; however, neither the types of caspases and inflammasomes involved, nor their impact on the Th17 response are known. Here we show that enhanced egg-induced IL-1ß secretion and pyroptotic cell death required both caspase-1 and caspase-8 as well as NLRP3 and AIM2 inflammasome activation. Schistosome genomic DNA activated AIM2, whereas reactive oxygen species, potassium efflux and cathepsin B, were the major activators of NLRP3. NLRP3 and AIM2 deficiency led to a significant reduction in pathogenic Th17 responses, suggesting their crucial and non-redundant role in promoting inflammation. Additionally, we show that NLRP3- and AIM2-induced IL-1ß suppressed IL-4 and protective Type I IFN (IFN-I) production, which further enhanced inflammation. IFN-I signaling also curbed inflammasome- mediated IL-1ß production suggesting that these two antagonistic pathways shape the severity of disease. Lastly, Gasdermin D (Gsdmd) deficiency resulted in a marked decrease in egg-induced granulomatous inflammation. Our findings establish NLRP3/AIM2-Gsdmd axis as a central inducer of pathogenic Th17 responses which is counteracted by IFN-I pathway in schistosomiasis.

2.
Iran J Public Health ; 52(11): 2286-2298, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38106824

RESUMO

Background: Non-tuberculous mycobacteria (NTM) infections have been continuously increasing as major concerns of public health in Iran. Because innate resistance of NTM species, the treatment of these infections is difficult task, but until now resistance pattern of NTM and suitable regimens are not determined. Methods: We systematically searched the relevant studies in PubMed, Scopus, and Embase (Until Dec 2022). All statistical analyses were carried out using the statistical package R. Results: Eleven studies included in the analysis were performed in 6 provinces and investigated 1223 NTM clinical species. The majority of the studies originated in Tehran. Among the first-line anti-TB drugs, almost all NTM species were highly resistant to first-line anti-TB drugs. No significant difference in the isoniazid resistance rate was found in the slow or rapid-growing species and Runyon's classification of NTM isolates. A decreased in the prevalence of ciprofloxacin, clarithromycin, and moxifloxacin resistance were showed in during 2013-2022 years. Conclusion: Most investigated antibiotics have a minor effect on NTM species and a steady increase of resistance has been seen in last few years then, need more-effective alternative regimens is clear.

3.
Proc Natl Acad Sci U S A ; 120(13): e2211047120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943884

RESUMO

There is significant disease heterogeneity among mouse strains infected with the helminth Schistosoma mansoni. Here, we uncover a unique balance in two critical innate pathways governing the severity of disease. In the low-pathology setting, parasite egg-stimulated dendritic cells (DCs) induce robust interferon (IFN)ß production, which is dependent on the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) cytosolic DNA sensing pathway and results in a Th2 response with suppression of proinflammatory cytokine production and Th17 cell activation. IFNß induces signal transducer and activator of transcription (STAT)1, which suppresses CD209a, a C-type lectin receptor associated with severe disease. In contrast, in the high-pathology setting, enhanced DC expression of the pore-forming protein gasdermin D (Gsdmd) results in reduced expression of cGAS/STING, impaired IFNß, and enhanced pyroptosis. Our findings demonstrate that cGAS/STING signaling represents a unique mechanism inducing protective type I IFN, which is counteracted by Gsdmd.


Assuntos
Gasderminas , Interferon Tipo I , Camundongos , Animais , Proteínas de Membrana/metabolismo , Transdução de Sinais , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , Imunidade Inata
4.
J Dent (Shiraz) ; 20(2): 95-101, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31214636

RESUMO

STATEMENT OF THE PROBLEM: Effective and informed planning for orthodontic services in any population requires assessment of the orthodontic treatment need and complexity. PURPOSE: The present cross-sectional study was conducted to assess these parameters using index of complexity, outcome, and need (ICON) in an Iranian schoolchildren population. MATERIALS AND METHOD: In total, 600 randomly selected individuals (300 girls, 300 boys; aged 13-15 years) participated in this study. The treatment need (ICON score>43) and the grades of complexity were compared between two genders and in different age groups. Descriptive statistics and Chi-square test were applied for data analysis considering p< 0.05. RESULTS: Out of 45% of the population found in need for orthodontic treatment, there was no significant difference between the two genders, but the 15-year-old individuals needed treatment significantly more than the individuals with 13 and 14 years of age. The mean ICON score was 44.3±20.28, which showed no significant difference between the two genders. The majority of the cases (34%) were categorized in the easy compartment in terms of complexity and 18% had difficult or very difficult grades of complexity. The genders and age groups exhibited no significant difference in terms of the complexity grade. CONCLUSION: Although half of the studied cases needed treatment, nearly one-fifth had difficult or very difficult complexity grade, which indicates the need for specialist care.

5.
Front Immunol ; 10: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761125

RESUMO

Schistosomiasis is a major helminthic disease in which damage to the affected organs is orchestrated by a pathogenic host CD4 T helper (Th) cell-mediated immune response against parasite eggs. In the case of the species Schistosoma mansoni, the resulting granulomatous inflammation and fibrosis takes place in the liver and intestines. The magnitude of disease varies greatly from individual to individual but in a minority of patients, there is severe disease and death. S. mansoni infection in a murine model similarly results in marked strain variation of immunopathology. In the most commonly examined mouse strain, C57BL/6 (BL/6), there is relatively mild hepatic pathology arising in a Th2-dominated cytokine environment. In contrast, CBA mice develop decisively more severe lesions largely driven by proinflammatory IL-17-producing Th17 cells. Dendritic cells (DCs) from CBA mice differ sharply with those from BL/6 mice in that they vastly over-express the C-type lectin receptor (CLR) CD209a (SIGNR5), a homolog of human DC-SIGN, which senses glycans such as those produced by schistosome eggs. Silencing of CD209a, and recent studies with CD209a KO CBA mice have shown that this receptor is crucial to induce the pathogenic Th17 cell response; indeed, CD209a KO mice display markedly reduced immunopathology akin to that seen in BL/6 mice. Mechanistically, CD209a synergizes with the related CLRs Dectin-2 and Mincle to stimulate increased DC production of IL-1ß and IL-23, necessary for pathogenic Th17 cell development. These findings denote key molecular underpinnings of disease variability based on selection and function of contrasting Th cell subsets.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Lectinas Tipo C/metabolismo , Esquistossomose/imunologia , Esquistossomose/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Animais , Biomarcadores , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Ligação Proteica , Proteínas Proto-Oncogênicas c-raf/metabolismo , Receptores de Superfície Celular/metabolismo , Schistosoma mansoni/imunologia , Esquistossomose/diagnóstico , Esquistossomose/parasitologia , Índice de Gravidade de Doença , Células Th2/imunologia , Células Th2/metabolismo
6.
Malar J ; 17(1): 456, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30522493

RESUMO

BACKGROUND: Plasmodium falciparum haemozoin, a detoxification product of digested haemoglobin from infected erythrocytes, is released into the bloodstream upon schizont rupture and accumulates in leukocytes. High levels of haemozoin correlate with disease severity. Some studies have shown that concentrations of the substrate of inducible nitric oxide synthase (iNOS), L-arginine, as well as nitric oxide are low in patients infected with P. falciparum malaria. The present study investigates, in vitro, the role of P. falciparum haemozoin on nitric oxide production, iNOS expression in macrophages, and the possible interaction between L-arginine and haemozoin. METHODS: Plasmodium falciparum haemozoin was obtained from in vitro cultures through magnetic isolation. Phagocytosis of haemozoin by immortalized bone marrow derived macrophages was detected by confocal reflection combined with fluorescence microscopy. Nitrite concentrations in the supernatants was evaluated by Griess assay as a standard indication of nitric oxide production, while iNOS expression was detected on cell extracts by western blotting. Detection of L-arginine in haemozoin-treated or untreated media was achieved by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Haemozoin synergizes in vitro with interferon-gamma to produce nitric oxide. However, when mouse macrophages were stimulated with haemozoin, a proportional increase of nitric oxide was observed up to 25 µM of haemozoin, followed by a decrease with doses up to 100 µM, when nitric oxide release was completely abrogated. This was not due to reactive oxygen species production, nor to an effect on iNOS activity. Interestingly, when at 24 h, haemozoin-treated macrophages were washed and incubated in fresh medium for further 24 h, the nitric oxide production was restored in a dose-response manner. Similar results were seen when L-arginine-enriched media was used in the stimulation. Moreover, muramyldipeptide, a strong nitric oxide inducer, was unable to activate macrophages to release nitric oxide in the presence of haemozoin-treated medium. By LC-MS/MS a complete depletion of L-arginine was observed in this haemozoin-treated, conditioned medium. CONCLUSIONS: It is proposed that haemozoin interacts with L-arginine reducing its availability for iNOS, and thus decreasing nitric oxide production. The clinical (or pathological) implications of these results are discussed.


Assuntos
Arginina/metabolismo , Hemeproteínas/metabolismo , Óxido Nítrico/metabolismo , Plasmodium falciparum/química , Animais , Arginina/química , Linhagem Celular , Células Cultivadas , Hemeproteínas/química , Humanos , Interferon gama/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo
7.
Vaccines (Basel) ; 6(1)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495555

RESUMO

Despite a global effort to develop an effective vaccine, malaria is still a significant health problem. Much of the pathology of malaria is immune mediated. This suggests that host immune responses have to be finely regulated. The innate immune system initiates and sets the threshold of the acquired immune response and determines the outcome of the disease. Yet, our knowledge of the regulation of innate immune responses during malaria is limited. Theoretically, inadequate activation of the innate immune system could result in unrestrained parasite growth. Conversely, hyperactivation of the innate immune system, is likely to cause excessive production of proinflammatory cytokines and severe pathology. Toll-like receptors (TLRs) have emerged as essential receptors which detect signature molecules and shape the complex host response during malaria infection. This review will highlight the mechanisms by which Plasmodium components are recognized by innate immune receptors with particular emphasis on TLRs. A thorough understanding of the complex roles of TLRs in malaria may allow the delineation of pathological versus protective host responses and enhance the efficacy of anti-malarial treatments and vaccines.

8.
Cell Rep ; 22(5): 1288-1300, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29386115

RESUMO

The immunopathology caused by schistosome helminths varies greatly in humans and among mouse strains. A severe form of parasite egg-induced hepatic granulomatous inflammation, seen in CBA mice, is driven by Th17 cells stimulated by IL-1ß and IL-23 produced by dendritic cells that express CD209a (SIGNR5), a C-type lectin receptor (CLR) related to human DC-SIGN. Here, we show that CD209a-deficient CBA mice display decreased Th17 responses and are protected from severe immunopathology. In vitro, CD209a augments the egg-induced IL-1ß and IL-23 production initiated by the related CLRs Dectin-2 and Mincle. While Dectin-2 and Mincle trigger an FcRγ-dependent signaling cascade that involves the tyrosine kinase Syk and the trimolecular Card9-Bcl10-Malt1 complex, CD209a promotes the sustained activation of Raf-1. Our findings demonstrate that CD209a drives severe Th17 cell-mediated immunopathology in a helminthic disease based on synergy between DC-SIGN- and Dectin-2-related CLRs.


Assuntos
Moléculas de Adesão Celular/imunologia , Lectinas Tipo C/imunologia , Proteínas de Membrana/imunologia , Receptores de Superfície Celular/imunologia , Esquistossomose mansoni/imunologia , Células Th17/imunologia , Animais , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Schistosoma mansoni , Transdução de Sinais/imunologia
9.
J Biol Chem ; 292(14): 5634-5644, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28209713

RESUMO

Bacterial sepsis involves a complex interaction between the host immune response and bacterial LPS. LPS binds Toll-like receptor (TLR) 4, which leads to the release of proinflammatory cytokines that are essential for a potent innate immune response against pathogens. The innate immune system is tightly regulated, as excessive inflammation can lead to organ failure and death. MicroRNAs have recently emerged as important regulators of the innate immune system. Here we determined the function of miR-718, which is conserved across mammals and overlaps with the 5' UTR of the interleukin 1 receptor-associated kinase (IRAK1) gene. As IRAK1 is a key component of innate immune signaling pathways that are downstream of most TLRs, we hypothesized that miR-718 helps regulate the innate immune response. Activation of TLR4, but not TLR3, induced the expression of miR-718 in macrophages. miR-718 expression was also induced in the spleens of mice upon LPS injection. miR-718 modulates PI3K/Akt signaling by directly down-regulating phosphatase and tensin homolog (PTEN), thereby promoting phosphorylation of Akt, which leads to a decrease in proinflammatory cytokine production. Phosphorylated Akt induces let-7e expression, which, in turn, down-regulates TLR4 and further diminishes TLR4-mediated proinflammatory signals. Decreased miR-718 expression is associated with bacterial burden during Neisseria gonorrhoeae infection and alters the infection dynamics of N. gonorrhoeae in vitro Furthermore, miR-718 regulates the induction of LPS tolerance in macrophages. We propose a role for miR-718 in controlling TLR4 signaling and inflammatory cytokine signaling through a negative feedback regulation loop involving down-regulation of TLR4, IRAK1, and NF-κB.


Assuntos
Regiões 5' não Traduzidas , Citocinas/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Animais , Citocinas/genética , Gonorreia/genética , Gonorreia/metabolismo , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Neisseria gonorrhoeae/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
10.
J Dent (Shiraz) ; 17(4): 367-369, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27942554

RESUMO

Ameloblastic fibroma is a rare mixed odontogenic tumor mostly occurring in the posterior region of the mandible. The peripheral variant is very rare and to the best of our knowledge, only three cases have been reported in the English literature. In this report, we describe a case of peripheral ameloblastic fibroma in a 54-year-old woman with two years of follow-up.

11.
Arch Iran Med ; 18(12): 858-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26621020

RESUMO

Primitive neuroectodermal tumors (PNETs) are a family of highly malignant soft tissue neoplasms mostly occurring in children and young adults. PNETs usually develop in the thoracopulmonary region, abdomen, pelvis, and rarely in the head and neck region. Here, a case of PNET located in the parotid gland is reported.


Assuntos
Tumores Neuroectodérmicos Primitivos Periféricos/diagnóstico , Neoplasias Parotídeas/diagnóstico , Adulto , Humanos , Masculino
12.
Nat Rev Immunol ; 14(11): 744-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25324127

RESUMO

Innate immune receptors have a key role in immune surveillance by sensing microorganisms and initiating protective immune responses. However, the innate immune system is a classic 'double-edged sword' that can overreact to pathogens, which can have deleterious effects and lead to clinical manifestations. Recent studies have unveiled the complexity of innate immune receptors that function as sensors of Plasmodium spp. in the vertebrate host. This Review highlights the cellular and molecular mechanisms by which Plasmodium infection is sensed by different families of innate immune receptors. We also discuss how these events mediate both host resistance to infection and the pathogenesis of malaria.


Assuntos
Imunidade Inata , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , DNA de Protozoário/imunologia , Eritrócitos/parasitologia , Hemeproteínas/imunologia , Humanos , Macrófagos/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/patologia , Plasmodium falciparum/genética , RNA de Protozoário/imunologia
13.
PLoS Pathog ; 10(5): e1004170, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24874410

RESUMO

Endemic Burkitt's lymphoma (eBL) arises from the germinal center (GC). It is a common tumor of young children in tropical Africa and its occurrence is closely linked geographically with the incidence of P. falciparum malaria. This association was noted more than 50 years ago. Since then we have learned that eBL contains the oncogenic herpes virus Epstein-Barr virus (EBV) and a defining translocation that activates the c-myc oncogene. However the link to malaria has never been explained. Here we provide evidence for a mechanism arising in the GC to explain this association. Accumulated evidence suggests that eBL arises in the GC when deregulated expression of AID (Activation-induced cytidine deaminase) causes a c-myc translocation in a cell latently infected with Epstein-Barr virus (EBV). Here we show that P. falciparum targets GC B cells via multiple pathways to increase the risk of eBL. 1. It causes deregulated expression of AID, thereby increasing the risk of a c-myc translocation. 2. It increases the number of B cells transiting the GC. 3. It dramatically increases the frequency of these cells that are infected with EBV and therefore protected from c-myc induced apoptosis. We propose that these activities combine synergistically to dramatically increase the incidence of eBL in individuals infected with malaria.


Assuntos
Linfoma de Burkitt/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4 , Malária Falciparum/imunologia , Plasmodium falciparum , Animais , Linfoma de Burkitt/parasitologia , Linfoma de Burkitt/virologia , Linhagem Celular , Infecções por Vírus Epstein-Barr/genética , Humanos , Malária Falciparum/genética , Translocação Genética/genética , Translocação Genética/fisiologia
14.
Proc Natl Acad Sci U S A ; 111(21): 7765-70, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24828532

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is an extracellular pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. The proinflammatory cytokine, interleukin-1ß, has been linked to hemolytic uremic syndrome. Here we identify the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome as an essential mediator of EHEC-induced IL-1ß. Whereas EHEC-specific virulence factors were dispensable for NLRP3 activation, bacterial nucleic acids such as RNA:DNA hybrids and RNA gained cytosolic access and mediated inflammasome-dependent responses. Consistent with a direct role for RNA:DNA hybrids in inflammasome activation, delivery of synthetic EHEC RNA:DNA hybrids into the cytosol triggered NLRP3-dependent responses, and introduction of RNase H, which degrades such hybrids, into infected cells specifically inhibited inflammasome activation. Notably, an E. coli rnhA mutant, which is incapable of producing RNase H and thus harbors increased levels of RNA:DNA hybrid, induced elevated levels of NLRP3-dependent caspase-1 activation and IL-1ß maturation. Collectively, these findings identify RNA:DNA hybrids of bacterial origin as a unique microbial trigger of the NLRP3 inflammasome.


Assuntos
Proteínas de Transporte/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli Êntero-Hemorrágica/imunologia , Síndrome Hemolítico-Urêmica/imunologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , RNA/metabolismo , Animais , Sequência de Bases , Proteínas de Transporte/imunologia , Caspase 1/imunologia , DNA de Cadeia Simples/genética , Ensaio de Imunoadsorção Enzimática , Proteínas de Escherichia coli/genética , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Dados de Sequência Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA/genética , Proteínas Ribossômicas/genética
15.
J Biol Chem ; 289(20): 13701-5, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24692555

RESUMO

The inflammatory cytokine IL-1ß is critical for host responses against many human pathogens. Here, we define Group B Streptococcus (GBS)-mediated activation of the Nod-like receptor-P3 (NLRP3) inflammasome in macrophages. NLRP3 activation requires GBS expression of the cytolytic toxin, ß-hemolysin, lysosomal acidification, and leakage. These processes allow the interaction of GBS RNA with cytosolic NLRP3. The present study supports a model in which GBS RNA, along with lysosomal components including cathepsins, leaks out of lysosomes and interacts with NLRP3 to induce IL-1ß production.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Hemolisinas/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/biossíntese , Macrófagos/metabolismo , RNA Bacteriano/metabolismo , Streptococcus agalactiae/fisiologia , Animais , Humanos , Interleucina-1beta/metabolismo , Lisossomos/metabolismo , Lisossomos/microbiologia , Macrófagos/citologia , Macrófagos/microbiologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fagossomos/metabolismo , Fagossomos/microbiologia , Streptococcus agalactiae/metabolismo
16.
Cell Rep ; 6(1): 196-210, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24388751

RESUMO

Hemozoin (Hz) is the crystalline detoxification product of hemoglobin in Plasmodium-infected erythrocytes. We previously proposed that Hz can carry plasmodial DNA into a subcellular compartment that is accessible to Toll-like receptor 9 (TLR9), inducing an inflammatory signal. Hz also activates the NLRP3 inflammasome in primed cells. We found that Hz appears to colocalize with DNA in infected erythrocytes, even before RBC rupture or phagolysosomal digestion. Using synthetic Hz coated in vitro with plasmodial genomic DNA (gDNA) or CpG oligodeoxynucleotides, we observed that DNA-complexed Hz induced TLR9 translocation, providing a priming and an activation signal for inflammasomes. After phagocytosis, Hz and DNA dissociate. Hz subsequently induces phagolysosomal destabilization, allowing phagolysosomal contents access to the cytosol, where DNA receptors become activated. Similar observations were made with Plasmodium-infected RBCs. Finally, infected erythrocytes activated both the NLRP3 and AIM2 inflammasomes. These observations suggest that Hz and DNA work together to induce systemic inflammation during malaria.


Assuntos
Proteínas de Transporte/metabolismo , DNA de Protozoário/metabolismo , Hemeproteínas/metabolismo , Inflamassomos/metabolismo , Malária/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , DNA de Protozoário/farmacologia , Proteínas de Ligação a DNA , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Hemeproteínas/farmacologia , Humanos , Inflamassomos/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Nucleares/genética , Fagocitose , Plasmodium/patogenicidade , Receptor Toll-Like 9/metabolismo
17.
Nat Immunol ; 14(8): 812-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23812099

RESUMO

Particulate ligands, including cholesterol crystals and amyloid fibrils, induce production of interleukin 1ß (IL-1ß) dependent on the cytoplasmic sensor NLRP3 in atherosclerosis, Alzheimer's disease and diabetes. Soluble endogenous ligands, including oxidized low-density lipoprotein (LDL), amyloid-ß and amylin peptides, accumulate in such diseases. Here we identify an endocytic pathway mediated by the pattern-recognition receptor CD36 that coordinated the intracellular conversion of those soluble ligands into crystals or fibrils, which resulted in lysosomal disruption and activation of the NLRP3 inflammasome. Consequently, macrophages that lacked CD36 failed to elicit IL-1ß production in response to those ligands, and targeting CD36 in atherosclerotic mice resulted in lower serum concentrations of IL-1ß and accumulation of cholesterol crystals in plaques. Collectively, our findings highlight the importance of CD36 in the accrual and nucleation of NLRP3 ligands from within the macrophage and position CD36 as a central regulator of inflammasome activation in sterile inflammation.


Assuntos
Doença de Alzheimer/imunologia , Aterosclerose/imunologia , Antígenos CD36/imunologia , Proteínas de Transporte/imunologia , Diabetes Mellitus Tipo 2/imunologia , Inflamação/imunologia , Animais , Antígenos CD36/genética , Proteínas de Transporte/genética , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Lipoproteínas LDL/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia de Fluorescência , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real
18.
Immunity ; 35(2): 194-207, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21820332

RESUMO

Although Toll-like receptor 9 (TLR9) has been implicated in cytokine and type I interferon (IFN) production during malaria in humans and mice, the high AT content of the Plasmodium falciparum genome prompted us to examine the possibility that malarial DNA triggered TLR9-independent pathways. Over 6000 ATTTTTAC ("AT-rich") motifs are present in the genome of P. falciparum, which we show here potently induce type I IFNs. Parasite DNA, parasitized erythrocytes and oligonucleotides containing the AT-rich motif induce type I IFNs via a pathway that did not involve the previously described sensors TLR9, DAI, RNA polymerase-III or IFI16/p204. Rather, AT-rich DNA sensing involved an unknown receptor that coupled to the STING, TBK1 and IRF3-IRF7 signaling pathway. Mice lacking IRF3, IRF7, the kinase TBK1 or the type I IFN receptor were resistant to otherwise lethal cerebral malaria. Collectively, these observations implicate AT-rich DNA sensing via STING, TBK1 and IRF3-IRF7 in P. falciparum malaria.


Assuntos
Sequência Rica em At/genética , DNA de Protozoário/genética , Malária Falciparum/imunologia , Oligonucleotídeos/genética , Plasmodium falciparum/fisiologia , Animais , DNA de Protozoário/metabolismo , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/fisiopatologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Oligonucleotídeos/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas Serina-Treonina Quinases/metabolismo , Receptor de Interferon alfa e beta/genética , Transdução de Sinais/genética
19.
FASEB J ; 23(8): 2366-73, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19299483

RESUMO

Controlling the HIV/AIDS epidemic remains a major challenge, with approximately 5 million new HIV infections annually. Cyclopentenone prostaglandins (CyPG), such as 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), are arachidonic acid-derived endogenous electrophiles that possess anti-HIV activity by an unknown mechanism. Given that the reactive alpha,beta-unsaturated ketone in the cyclopentenone ring of 15d-PGJ(2) covalently modifies key Cys thiols in select proteins, we hypothesized that 15d-PGJ(2) inhibits HIV transcription and replication by targeting Cys thiols in HIV-1 Tat. Tat is a potent transactivator of viral gene expression required for HIV transcriptional elongation and replication. Our studies indicate that 15d-PGJ(2) treatment of cells inhibits Tat-dependent transcription and replication of HIV-1, while 9,10-dihydro-15d-PGJ(2), PGE(2), PGF(2alpha), or PGD(2) that lack the reactive alpha,beta-unsaturated ketone were ineffective. The inhibition of Tat activity by 15d-PGJ(2) was dose-dependent, with an IC(50) of 1.2 microM and independent of NF-kappaB pathway. Furthermore, using a biotinylated derivative of 15d-PGJ(2), we demonstrate that 15d-PGJ(2) modifies free Cys-thiols in Tat to form covalent Michael adducts and that the interaction was further increased on reduction of Tat. 15d-PGJ(2)-modified Tat was unable to transactivate the HIV long terminal repeat in U937 human macrophages. These data demonstrate that Tat acts as a molecular target of CyPG leading to the inhibition of transcription and also suggest a novel therapeutic approach to complement current antiretroviral strategies for HIV/AIDS.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Prostaglandina D2/análogos & derivados , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Cisteína/química , HIV-1/genética , HIV-1/fisiologia , Humanos , NF-kappa B/metabolismo , Prostaglandina D2/farmacologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transcrição Gênica/efeitos dos fármacos , Células U937 , Replicação Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
20.
Biochem J ; 419(2): 401-9, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19140805

RESUMO

GA (gambogic acid) is a polyprenylated xanthone abundant in the resin of Garcinia morella and Garcinia hanburyi with a long history of use as a complementary and alternative medicine. The antitumour activity of GA has been well demonstrated and is thought to arise partly from the associated anti-inflammatory activity. Recent studies have indicated that the antitumour activity of GA is mediated by its ligation of TfR1 (transferrin receptor-1). Since the cellular expression of TfR1 is down-regulated by LPS (lipopolysaccharide), we hypothesized that an alternative pathway exists in immune cells, such as macrophages, where GA could mitigate the expression of pro-inflammatory genes. Here we demonstrate that GA inhibits the LPS-dependent expression of NF-kappaB (nuclear factor kappaB) target pro-inflammatory genes in macrophages. Western immunoblot, NF-kappaB-luciferase reporter and gel-shift analyses revealed that GA strongly blocked the activation of NF-kappaB induced by LPS, whereas 9,10-dihydro-GA, which lacks the reactive alpha,beta-unsaturated carbonyl group, was ineffective. Moreover, GA was able to decrease nuclear p65 levels in RAW264.7 macrophages, where the expression of TfR1 was down-regulated by RNA interference. in vitro kinase assays coupled with interaction studies using biotinylated GA as well as proteomic analysis demonstrated that IKKbeta [IkappaB (inhibitory kappaB) kinase-beta], a key kinase of the NF-kappaB signalling axis, was covalently modified by GA at Cys-179, causing significant inhibition of its kinase activity. Taken together, these results demonstrate the potent anti-inflammatory activity of GA.


Assuntos
Quinase I-kappa B/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Xantonas/química , Xantonas/farmacologia , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Humanos , Imunoprecipitação , Lipopolissacarídeos/farmacologia , Camundongos , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA