Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Front Oncol ; 14: 1343091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884087

RESUMO

Cancer is typically treated with combinatorial therapy, and such combinations may be synergistic. However, discovery of these combinations has proven difficult as brute force combinatorial screening approaches are both logistically complex and resource-intensive. Therefore, computational approaches to augment synergistic drug discovery are of interest, but current approaches are limited by their dependencies on combinatorial drug screening training data or molecular profiling data. These dataset dependencies can limit the number and diversity of drugs for which these approaches can make inferences. Herein, we describe a novel computational framework, ReCorDE (Recurrent Correlation of Drugs with Enrichment), that uses publicly-available cell line-derived monotherapy cytotoxicity datasets to identify drug classes targeting shared vulnerabilities across multiple cancer lineages; and we show how these inferences can be used to augment synergistic drug combination discovery. Additionally, we demonstrate in preclinical models that a drug class combination predicted by ReCorDE to target shared vulnerabilities (PARP inhibitors and Aurora kinase inhibitors) exhibits class-class synergy across lineages. ReCorDE functions independently of combinatorial drug screening and molecular profiling data, using only extensive monotherapy cytotoxicity datasets as its input. This allows ReCorDE to make robust inferences for a large, diverse array of drugs. In conclusion, we have described a novel framework for the identification of drug classes targeting shared vulnerabilities using monotherapy cytotoxicity datasets, and we showed how these inferences can be used to aid discovery of novel synergistic drug combinations.

2.
Breast Cancer Res ; 26(1): 97, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858721

RESUMO

BACKGROUND: Tumor immune infiltration and peripheral blood immune signatures have prognostic and predictive value in breast cancer. Whether distinct peripheral blood immune phenotypes are associated with response to neoadjuvant chemotherapy (NAC) remains understudied. METHODS: Peripheral blood mononuclear cells from 126 breast cancer patients enrolled in a prospective clinical trial (NCT02022202) were analyzed using Cytometry by time-of-flight with a panel of 29 immune cell surface protein markers. Kruskal-Wallis tests or Wilcoxon rank-sum tests were used to evaluate differences in immune cell subpopulations according to breast cancer subtype and response to NAC. RESULTS: There were 122 evaluable samples: 47 (38.5%) from patients with hormone receptor-positive, 39 (32%) triple-negative (TNBC), and 36 (29.5%) HER2-positive breast cancer. The relative abundances of pre-treatment peripheral blood T, B, myeloid, NK, and unclassified cells did not differ according to breast cancer subtype. In TNBC, higher pre-treatment myeloid cells were associated with lower pathologic complete response (pCR) rates. In hormone receptor-positive breast cancer, lower pre-treatment CD8 + naïve and CD4 + effector memory cells re-expressing CD45RA (TEMRA) T cells were associated with more extensive residual disease after NAC. In HER2 + breast cancer, the peripheral blood immune phenotype did not differ according to NAC response. CONCLUSIONS: Pre-treatment peripheral blood immune cell populations (myeloid in TNBC; CD8 + naïve T cells and CD4 + TEMRA cells in luminal breast cancer) were associated with response to NAC in early-stage TNBC and hormone receptor-positive breast cancers, but not in HER2 + breast cancer. TRIAL REGISTRATION: NCT02022202 . Registered 20 December 2013.


Assuntos
Neoplasias da Mama , Imunofenotipagem , Terapia Neoadjuvante , Humanos , Feminino , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Adulto , Idoso , Receptor ErbB-2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucócitos Mononucleares/metabolismo , Biomarcadores Tumorais/sangue , Prognóstico , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/patologia , Estudos Prospectivos , Resultado do Tratamento , Quimioterapia Adjuvante/métodos
3.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38585820

RESUMO

The OmicsFootPrint framework addresses the need for advanced multi-omics data analysis methodologies by transforming data into intuitive two-dimensional circular images and facilitating the interpretation of complex diseases. Utilizing Deep Neural Networks and incorporating the SHapley Additive exPlanations (SHAP) algorithm, the framework enhances model interpretability. Tested with The Cancer Genome Atlas (TCGA) data, OmicsFootPrint effectively classified lung and breast cancer subtypes, achieving high Area Under Curve (AUC) scores - 0.98±0.02 for lung cancer subtype differentiation, 0.83±0.07 for breast cancer PAM50 subtypes, and successfully distinguishe between invasive lobular and ductal carcinomas in breast cancer, showcasing its robustness. It also demonstrated notable performance in predicting drug responses in cancer cell lines, with a median AUC of 0.74, surpassing existing algorithms. Furthermore, its effectiveness persists even with reduced training sample sizes. OmicsFootPrint marks an enhancement in multi-omics research, offering a novel, efficient, and interpretable approach that contributes to a deeper understanding of disease mechanisms.

4.
NPJ Breast Cancer ; 10(1): 25, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553444

RESUMO

Operable triple-negative breast cancer (TNBC) has a higher risk of recurrence and death compared to other subtypes. Tumor size and nodal status are the primary clinical factors used to guide systemic treatment, while biomarkers of proliferation have not demonstrated value. Recent studies suggest that subsets of TNBC have a favorable prognosis, even without systemic therapy. We evaluated the association of fully automated mitotic spindle hotspot (AMSH) counts with recurrence-free (RFS) and overall survival (OS) in two separate cohorts of patients with early-stage TNBC who did not receive systemic therapy. AMSH counts were obtained from areas with the highest mitotic density in digitized whole slide images processed with a convolutional neural network trained to detect mitoses. In 140 patients from the Mayo Clinic TNBC cohort, AMSH counts were significantly associated with RFS and OS in a multivariable model controlling for nodal status, tumor size, and tumor-infiltrating lymphocytes (TILs) (p < 0.0001). For every 10-point increase in AMSH counts, there was a 16% increase in the risk of an RFS event (HR 1.16, 95% CI 1.08-1.25), and a 7% increase in the risk of death (HR 1.07, 95% CI 1.00-1.14). We corroborated these findings in a separate cohort of systemically untreated TNBC patients from Radboud UMC in the Netherlands. Our findings suggest that AMSH counts offer valuable prognostic information in patients with early-stage TNBC who did not receive systemic therapy, independent of tumor size, nodal status, and TILs. If further validated, AMSH counts could help inform future systemic therapy de-escalation strategies.

5.
J Alzheimers Dis ; 99(s2): S281-S297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393902

RESUMO

Background: A strong body of evidence suggests that cerebrovascular pathologies augment the onset and progression of Alzheimer's disease (AD). One distinctive aspect of this cerebrovascular dysfunction is the degeneration of brain pericytes-often overlooked supporting cells of blood-brain barrier endothelium. Objective: The current study investigates the influence of pericytes on gene and protein expressions in the blood-brain barrier endothelium, which is expected to facilitate the identification of pathophysiological pathways that are triggered by pericyte loss and lead to blood-brain barrier dysfunction in AD. Methods: Bioinformatics analysis was conducted on the RNA-Seq expression counts matrix (GSE144474), which compared solo-cultured human blood-brain barrier endothelial cells against endothelial cells co-cultured with human brain pericytes in a non-contact model. We constructed a similar cell culture model to verify protein expression using western blots. Results: The insulin resistance and ferroptosis pathways were found to be enriched. Western blots of the insulin receptor and heme oxygenase expressions were consistent with those observed in RNA-Seq data. Additionally, we observed more than 5-fold upregulation of several genes associated with neuroprotection, including insulin-like growth factor 2 and brain-derived neurotrophic factor. Conclusions: Results suggest that pericyte influence on blood-brain barrier endothelial gene expression confers protection from insulin resistance, iron accumulation, oxidative stress, and amyloid deposition. Since these are conditions associated with AD pathophysiology, they imply mechanisms by which pericyte degeneration could contribute to disease progression.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Células Endoteliais , Pericitos , Pericitos/metabolismo , Pericitos/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Células Endoteliais/metabolismo , Técnicas de Cocultura , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Regulação da Expressão Gênica , Resistência à Insulina/fisiologia
6.
Breast Cancer Res ; 26(1): 4, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172915

RESUMO

BACKGROUND: Dysregulated Notch signalling contributes to breast cancer development and progression, but validated tools to measure the level of Notch signalling in breast cancer subtypes and in response to systemic therapy are largely lacking. A transcriptomic signature of Notch signalling would be warranted, for example to monitor the effects of future Notch-targeting therapies and to learn whether altered Notch signalling is an off-target effect of current breast cancer therapies. In this report, we have established such a classifier. METHODS: To generate the signature, we first identified Notch-regulated genes from six basal-like breast cancer cell lines subjected to elevated or reduced Notch signalling by culturing on immobilized Notch ligand Jagged1 or blockade of Notch by γ-secretase inhibitors, respectively. From this cadre of Notch-regulated genes, we developed candidate transcriptomic signatures that were trained on a breast cancer patient dataset (the TCGA-BRCA cohort) and a broader breast cancer cell line cohort and sought to validate in independent datasets. RESULTS: An optimal 20-gene transcriptomic signature was selected. We validated the signature on two independent patient datasets (METABRIC and Oslo2), and it showed an improved coherence score and tumour specificity compared with previously published signatures. Furthermore, the signature score was particularly high for basal-like breast cancer, indicating an enhanced level of Notch signalling in this subtype. The signature score was increased after neoadjuvant treatment in the PROMIX and BEAUTY patient cohorts, and a lower signature score generally correlated with better clinical outcome. CONCLUSIONS: The 20-gene transcriptional signature will be a valuable tool to evaluate the response of future Notch-targeting therapies for breast cancer, to learn about potential effects on Notch signalling from conventional breast cancer therapies and to better stratify patients for therapy considerations.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
7.
NPJ Breast Cancer ; 9(1): 101, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114522

RESUMO

Endoxifen, a secondary tamoxifen metabolite, is a potent antiestrogen exhibiting estrogen receptor alpha (ERα) binding at nanomolar concentrations. Phase I/II clinical trials identified clinical activity of Z-endoxifen (ENDX), in endocrine-refractory metastatic breast cancer as well as ERα+ solid tumors, raising the possibility that ENDX may have a second, ERα-independent, mechanism of action. An unbiased mass spectrometry approach revealed that ENDX concentrations achieved clinically with direct ENDX administration (5 µM), but not low concentrations observed during tamoxifen treatment (<0.1 µM), profoundly altered the phosphoproteome of the aromatase expressing MCF7AC1 cells with limited impact on the total proteome. Computational analysis revealed protein kinase C beta (PKCß) and protein kinase B alpha or AKT1 as potential kinases responsible for mediating ENDX effects on protein phosphorylation. ENDX more potently inhibited PKCß1 kinase activity compared to other PKC isoforms, and ENDX binding to PKCß1 was confirmed using Surface Plasma Resonance. Under conditions that activated PKC/AKT signaling, ENDX induced PKCß1 degradation, attenuated PKCß1-activated AKTSer473 phosphorylation, diminished AKT substrate phosphorylation, and induced apoptosis. ENDX's effects on AKT were phenocopied by siRNA-mediated PKCß1 knockdown or treatment with the pan-AKT inhibitor, MK-2206, while overexpression of constitutively active AKT diminished ENDX-induced apoptosis. These findings, which identify PKCß1 as an ENDX target, indicate that PKCß1/ENDX interactions suppress AKT signaling and induce apoptosis in breast cancer.

8.
Mol Ther Nucleic Acids ; 33: 28-41, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37359348

RESUMO

Estrogen signaling is critical for the development and maintenance of healthy bone, and age-related decline in estrogen levels contributes to the development of post-menopausal osteoporosis. Most bones consist of a dense cortical shell and an internal mesh-like network of trabecular bone that respond differently to internal and external cues such as hormonal signaling. To date, no study has assessed the transcriptomic differences that occur specifically in cortical and trabecular bone compartments in response to hormonal changes. To investigate this, we employed a mouse model of post-menopausal osteoporosis (ovariectomy, OVX) and estrogen replacement therapy (ERT). mRNA and miR sequencing revealed distinct transcriptomic profiles between cortical and trabecular bone in the setting of OVX and ERT. Seven miRs were identified as likely contributors to the observed estrogen-mediated mRNA expression changes. Of these, four miRs were prioritized for further study and decreased predicted target gene expression in bone cells, enhanced the expression of osteoblast differentiation markers, and altered the mineralization capacity of primary osteoblasts. As such, candidate miRs and miR mimics may have therapeutic relevance for bone loss resulting from estrogen depletion without the unwanted side effects of hormone replacement therapy and therefore represent novel therapeutic approaches to combat diseases of bone loss.

9.
Breast Cancer Res ; 25(1): 57, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226243

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Patients with TNBC are primarily treated with neoadjuvant chemotherapy (NAC). The response to NAC is prognostic, with reductions in overall survival and disease-free survival rates in those patients who do not achieve a pathological complete response (pCR). Based on this premise, we hypothesized that paired analysis of primary and residual TNBC tumors following NAC could identify unique biomarkers associated with post-NAC recurrence. METHODS AND RESULTS: We investigated 24 samples from 12 non-LAR TNBC patients with paired pre- and post-NAC data, including four patients with recurrence shortly after surgery (< 24 months) and eight who remained recurrence-free (> 48 months). These tumors were collected from a prospective NAC breast cancer study (BEAUTY) conducted at the Mayo Clinic. Differential expression analysis of pre-NAC biopsies showed minimal gene expression differences between early recurrent and nonrecurrent TNBC tumors; however, post-NAC samples demonstrated significant alterations in expression patterns in response to intervention. Topological-level differences associated with early recurrence were implicated in 251 gene sets, and an independent assessment of microarray gene expression data from the 9 paired non-LAR samples available in the NAC I-SPY1 trial confirmed 56 gene sets. Within these 56 gene sets, 113 genes were observed to be differentially expressed in the I-SPY1 and BEAUTY post-NAC studies. An independent (n = 392) breast cancer dataset with relapse-free survival (RFS) data was used to refine our gene list to a 17-gene signature. A threefold cross-validation analysis of the gene signature with the combined BEAUTY and I-SPY1 data yielded an average AUC of 0.88 for six machine-learning models. Due to the limited number of studies with pre- and post-NAC TNBC tumor data, further validation of the signature is needed. CONCLUSION: Analysis of multiomics data from post-NAC TNBC chemoresistant tumors showed down regulation of mismatch repair and tubulin pathways. Additionally, we identified a 17-gene signature in TNBC associated with post-NAC recurrence enriched with down-regulated immune genes.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Regulação para Baixo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Tubulina (Proteína) , Reparo de Erro de Pareamento de DNA , Multiômica , Estudos Prospectivos , Recidiva Local de Neoplasia/genética
10.
Nat Commun ; 14(1): 2215, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072398

RESUMO

The utility of spatial immunobiomarker quantitation in prognostication and therapeutic prediction is actively being investigated in triple-negative breast cancer (TNBC). Here, with high-plex quantitative digital spatial profiling, we map and quantitate intraepithelial and adjacent stromal tumor immune protein microenvironments in systemic treatment-naïve (female only) TNBC to assess the spatial context in immunobiomarker-based prediction of outcome. Immune protein profiles of CD45-rich and CD68-rich stromal microenvironments differ significantly. While they typically mirror adjacent, intraepithelial microenvironments, this is not uniformly true. In two TNBC cohorts, intraepithelial CD40 or HLA-DR enrichment associates with better outcomes, independently of stromal immune protein profiles or stromal TILs and other established prognostic variables. In contrast, intraepithelial or stromal microenvironment enrichment with IDO1 associates with improved survival irrespective of its spatial location. Antigen-presenting and T-cell activation states are inferred from eigenprotein scores. Such scores within the intraepithelial compartment interact with PD-L1 and IDO1 in ways that suggest prognostic and/or therapeutic potential. This characterization of the intrinsic spatial immunobiology of treatment-naïve TNBC highlights the importance of spatial microenvironments for biomarker quantitation to resolve intrinsic prognostic and predictive immune features and ultimately inform therapeutic strategies for clinically actionable immune biomarkers.


Assuntos
Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Biomarcadores/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos do Interstício Tumoral , Antígenos CD40/metabolismo , Ativação Linfocitária , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral
11.
Prostate ; 83(7): 649-655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924119

RESUMO

OBJECTIVE: Elevated serum chromogranin A (CGA) is associated with intrinsic or treatment-related neuroendocrine differentiation (NED) in men with metastatic castration-resistant prostate cancer (mCRPC). Fluctuations in serum CGA during treatment of mCRPC have had conflicting results. We analyzed the impact of (i) rising serum CGA and (ii) baseline CGA/PSA ratio during treatment to identify associations with abiraterone acetate (AA) therapy. METHODS: Between June 2013 and August 2015, 92 men with mCRPC were enrolled in a prospective trial with uniform serum CGA processing performed before initiating abiraterone acetate/prednisone (AA/P) and serially after 12 weeks of AA/P treatments. Serum CGA was measured using a homogenous automated immunofluorescent assay. Patients receiving proton pump inhibitors or with abnormal renal function were excluded due to possible false elevations of serum CGA (n = 21 excluded), therefore 71 patients were analyzed. All patients underwent a composite response assessment at 12-weeks. Kaplan-Meier estimates and Cox Regression models were used to calculate the association with time-to-treatment failure analyses and overall survival. RESULTS: An increase in chromogranin was associated with a lower risk of treatment failure (hazard ratio [HR]: 0.52, p = 0.0181). The median CGA/PSA ratio was 7.8 (2.6-16.0) and an elevated pretreatment CGA/PSA ratio above the median was associated with a lower risk of treatment failure (HR: 0.54 p value = 0.0185). An increase in CGA was not found to be associated with OS (HR: 0.71, 95% CI: 0.42-1.21, p = 0.207). An elevated baseline CGA/PSA ratio was not associated with OS (HR: 0.62, 95% CI: 0.37-1.03, p = 0.062). An increase in PSA after 12 weeks of treatment was associated with an increased risk of treatment failure (HR: 4.14, CI: 2.21-7.73, p = < 0.0001) and worse OS (HR: 2.93, CI: 1.57-4.45, p = < 0.0001). CONCLUSIONS: We show that an increasing chromogranin on AA/P and an elevated baseline CGA/PSA in patients with mCRPC were associated with a favorable response to AA/P with no changes in survival. There may be limited clinical utility in serum CGA testing to evaluate for lethal NED as AA/P did not induce lethal NED in this cohort. This highlights that not all patients with an increasing CGA have a worse OS.


Assuntos
Acetato de Abiraterona , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Acetato de Abiraterona/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Cromogranina A , Cromograninas , Estudos Prospectivos , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos Retrospectivos , Resultado do Tratamento
12.
Cancer Res ; 83(8): 1361-1380, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36779846

RESUMO

Survival rates of patients with metastatic castration-resistant prostate cancer (mCRPC) are low due to lack of response or acquired resistance to available therapies, such as abiraterone (Abi). A better understanding of the underlying molecular mechanisms is needed to identify effective targets to overcome resistance. Given the complexity of the transcriptional dynamics in cells, differential gene expression analysis of bulk transcriptomics data cannot provide sufficient detailed insights into resistance mechanisms. Incorporating network structures could overcome this limitation to provide a global and functional perspective of Abi resistance in mCRPC. Here, we developed TraRe, a computational method using sparse Bayesian models to examine phenotypically driven transcriptional mechanistic differences at three distinct levels: transcriptional networks, specific regulons, and individual transcription factors (TF). TraRe was applied to transcriptomic data from 46 patients with mCRPC with Abi-response clinical data and uncovered abrogated immune response transcriptional modules that showed strong differential regulation in Abi-responsive compared with Abi-resistant patients. These modules were replicated in an independent mCRPC study. Furthermore, key rewiring predictions and their associated TFs were experimentally validated in two prostate cancer cell lines with different Abi-resistance features. Among them, ELK3, MXD1, and MYB played a differential role in cell survival in Abi-sensitive and Abi-resistant cells. Moreover, ELK3 regulated cell migration capacity, which could have a direct impact on mCRPC. Collectively, these findings shed light on the underlying transcriptional mechanisms driving Abi response, demonstrating that TraRe is a promising tool for generating novel hypotheses based on identified transcriptional network disruptions. SIGNIFICANCE: The computational method TraRe built on Bayesian machine learning models for investigating transcriptional network structures shows that disruption of ELK3, MXD1, and MYB signaling cascades impacts abiraterone resistance in prostate cancer.


Assuntos
Androstenos , Resistencia a Medicamentos Antineoplásicos , Redes Reguladoras de Genes , Aprendizado de Máquina , Neoplasias da Próstata , Teorema de Bayes , Transcrição Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Humanos , Masculino , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas Proto-Oncogênicas c-myb/genética , Androstenos/uso terapêutico , Perfilação da Expressão Gênica , Simulação por Computador
14.
Cancers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077757

RESUMO

Neoadjuvant chemotherapy (NAC) remains the cornerstone of the treatment for triple negative breast cancer (TNBC), with the goal of complete eradication of disease. However, for patients with residual disease after NAC, recurrence and mortality rates are high and the identification of novel therapeutic targets is urgently needed. We quantified tyrosine phosphorylation (pTyr)-mediated signaling networks in chemotherapy sensitive (CS) and resistant (CR) TNBC patient-derived xenografts (PDX), to gain novel therapeutic insights. The antitumor activity of SFK inhibition was examined in vivo. Treated tumors were further subjected to phosphoproteomic and RNAseq analysis, to identify the mechanism of actions of the drug. We identified Src Family Kinases (SFKs) as potential therapeutic targets in CR TNBC PDXs. Treatment with dasatinib, an FDA approved SFK inhibitor, led to inhibition of tumor growth in vivo. Further analysis of post-treatment PDXs revealed multiple mechanisms of actions of the drug, confirming the multi-target inhibition of dasatinib. Analysis of pTyr in tumor specimens suggested a low prevalence of SFK-driven tumors, which may provide insight into prior clinical trial results demonstrating a lack of dasatinib antitumor activity in unselected breast cancer patients. Taken together, these results underscore the importance of pTyr characterization of tumors, in identifying new targets, as well as stratifying patients based on their activated signaling networks for therapeutic options. Our data provide a strong rationale for studying SFK inhibitors in biomarker-selected SFK-driven TNBC.

15.
Mol Cancer Res ; 20(12): 1739-1750, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36135372

RESUMO

We identified resistance mechanisms to abiraterone acetate/prednisone (AA/P) in patients with metastatic castration-resistant prostate cancer (mCRPC) in the Prostate Cancer Medically Optimized Genome-Enhanced Therapy (PROMOTE) study.We analyzed whole-exome sequencing (WES) and RNA-sequencing data from 83 patients with metastatic biopsies before (V1) and after 12 weeks of AA/P treatment (V2). Resistance was determined by time to treatment change (TTTC).At V2, 18 and 11 of 58 patients had either short-term (median 3.6 months; range 1.4-4.5) or long-term (median 29 months; range 23.5-41.7) responses, respectively. Nonresponders had low expression of TGFBR3 and increased activation of the Wnt pathway, cell cycle, upregulation of AR variants, both pre- and posttreatment, with further deletion of AR inhibitor CDK11B posttreatment. Deletion of androgen processing genes, HSD17B11, CYP19A1 were observed in nonresponders posttreatment. Genes involved in cell cycle, DNA repair, Wnt-signaling, and Aurora kinase pathways were differentially expressed between the responder and non-responder at V2. Activation of Wnt signaling in nonresponder and deactivation of MYC or its target genes in responders was detected via SCN loss, somatic mutations, and transcriptomics. Upregulation of genes in the AURKA pathway are consistent with the activation of MYC regulated genes in nonresponders. Several genes in the AKT1 axis had increased mutation rate in nonresponders. We also found evidence of resistance via PDCD1 overexpression in responders. IMPLICATIONS: Finally, we identified candidates drugs to reverse AA/P resistance: topoisomerase inhibitors and drugs targeting the cell cycle via the MYC/AURKA/AURKB/TOP2A and/or PI3K_AKT_MTOR pathways.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Prednisona/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Aurora Quinase A , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Acetato de Abiraterona/efeitos adversos
16.
NPJ Syst Biol Appl ; 8(1): 29, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974022

RESUMO

Critical functions of the blood-brain barrier (BBB), including cerebral blood flow, energy metabolism, and immunomodulation, are regulated by insulin signaling pathways. Therefore, endothelial insulin resistance could lead to BBB dysfunction, which is associated with neurodegenerative diseases such as Alzheimer's disease (AD). The current study aims to map the dynamics of insulin-responsive pathways in polarized human cerebral microvascular endothelial cell (hCMEC/D3) monolayers. RNA-Sequencing was performed on hCMEC/D3 monolayers with and without insulin treatment at various time points. The Short Time-series Expression Miner (STEM) method was used to identify gene clusters with distinct and representative expression patterns. Functional annotation and pathway analysis of genes from selected clusters were conducted using Webgestalt and Ingenuity Pathway Analysis (IPA) software. Quantitative expression differences of 16,570 genes between insulin-treated and control monolayers were determined at five-time points. The STEM software identified 12 significant clusters with 6880 genes that displayed distinct temporal patterns upon insulin exposure, and the clusters were further divided into three groups. Gene ontology (GO) enrichment analysis demonstrated that biological processes protecting BBB functions such as regulation of vascular development and actin cytoskeleton reorganization were upregulated after insulin treatment (Group 1 and 2). In contrast, GO pathways related to inflammation, such as response to interferon-gamma, were downregulated (Group 3). The IPA analyses further identified insulin-responsive cellular and molecular pathways that are associated with AD pathology. These findings unravel the dynamics of insulin action on the BBB endothelium and inform about downstream signaling cascades that are potentially disrupted due to brain insulin resistance prevalent in AD.


Assuntos
Barreira Hematoencefálica , Resistência à Insulina , Barreira Hematoencefálica/metabolismo , Endotélio , Humanos , Insulina/farmacologia , Transcriptoma
17.
NAR Cancer ; 4(3): zcac022, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35875052

RESUMO

A problematic feature of many human cancers is a lack of understanding of mechanisms controlling organ-specific patterns of metastasis, despite recent progress in identifying many mutations and transcriptional programs shown to confer this potential. To address this gap, we developed a methodology that enables different aspects of the metastatic process to be comprehensively characterized at a clonal resolution. Our approach exploits the application of a computational pipeline to analyze and visualize clonal data obtained from transplant experiments in which a cellular DNA barcoding strategy is used to distinguish the separate clonal contributions of two or more competing cell populations. To illustrate the power of this methodology, we demonstrate its ability to discriminate the metastatic behavior in immunodeficient mice of a well-established human metastatic cancer cell line and its co-transplanted LRRC15 knockdown derivative. We also show how the use of machine learning to quantify clone-initiating cell (CIC) numbers and their subsequent metastatic progeny generated in different sites can reveal previously unknown relationships between different cellular genotypes and their initial sites of implantation with their subsequent respective dissemination patterns. These findings underscore the potential of such combined genomic and computational methodologies to identify new clonally-relevant drivers of site-specific patterns of metastasis.

18.
Twin Res Hum Genet ; 25(3): 156-164, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35786423

RESUMO

Nature and nurture have always been a prerogative of evolutionary biologists. The environment's role in shaping an organism's phenotype has always intrigued us. Since the inception of humankind, twinning has existed with an unsettled parley on the contribution of nature (i.e. genetics) versus nurture (i.e. environment), which can influence the phenotypes. The study of twins measures the genetic contribution and that of the environmental influence for a particular trait, acting as a catalyst, fine-tuning the phenotypic trajectories. This is further evident because a number of human diseases show a spectrum of clinical manifestations with the same underlying molecular aberration. As of now, there is no definite way to conclude just from the genomic data the severity of a disease or even to predict who will get affected. This greatly justifies initiating a twin registry for a country as diverse and populated as India. There is an unmet need to set up a nationwide database to carefully curate the information on twins, serving as a valuable biorepository to study their overall susceptibility to disease. Establishing a twin registry is of paramount importance to harness the wealth of human information related to the biomedical, anthropological, cultural, social and economic significance.


Assuntos
Doenças em Gêmeos , Gêmeos , Doenças em Gêmeos/epidemiologia , Doenças em Gêmeos/genética , Humanos , Índia/epidemiologia , Sistema de Registros , Gêmeos/genética , Recursos Humanos
19.
NAR Cancer ; 4(2): zcac018, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35734391

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with low overall survival rates and high molecular heterogeneity; therefore, few targeted therapies are available. The luminal androgen receptor (LAR) is the most consistently identified TNBC subtype, but the clinical utility has yet to be established. Here, we constructed a novel genomic classifier, LAR-Sig, that distinguishes the LAR subtype from other TNBC subtypes and provide evidence that it is a clinically distinct disease. A meta-analysis of seven TNBC datasets (n = 1086 samples) from neoadjuvant clinical trials demonstrated that LAR patients have significantly reduced response (pCR) rates than non-LAR TNBC patients (odds ratio = 2.11, 95% CI: 1.33, 2.89). Moreover, deconvolution of the tumor microenvironment confirmed an enrichment of luminal epithelium corresponding with a decrease in basal and myoepithelium in LAR TNBC tumors. Increased immunosuppression in LAR patients may lead to a decreased presence of cycling T-cells and plasma cells. While, an increased presence of myofibroblast-like cancer-associated cells may impede drug delivery and treatment. In summary, the lower levels of tumor infiltrating lymphocytes (TILs), reduced immune activity in the micro-environment, and lower pCR rates after NAC, suggest that new therapeutic strategies for the LAR TNBC subtype need to be developed.

20.
Clin Pharmacol Ther ; 111(6): 1296-1306, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35288936

RESUMO

Approximately one-third of patients with metastatic castration-resistant prostate cancer (CRPC) exhibited primary abiraterone resistance. To identify alternative treatment for abiraterone nonresponders, we performed drug discovery analyses using the L1000 database using differentially expressed genes identified in tumor biopsies and patient-derived xenograft (PDX) tumors between abiraterone responders and nonresponders enrolled in PROMOTE trial. This approach identified 3 drugs, including topoisomerase II (TOP2) inhibitor mitoxantrone, CDK4/6 inhibitor palbociclib, and pan-CDK inhibitor PHA-793887. These drugs significantly suppressed the growth of abiraterone-resistant cell lines and PDX models. Moreover, we identified 11 genes targeted by all 3 drugs that were associated with worse outcomes in both the PROMOTE and Stand Up To Cancer cohorts. This 11-gene panel might also function as biomarkers to select the 3 alternative therapies for this subgroup of patients with CRPC, warranting further clinical investigation.


Assuntos
Terapias Complementares , Neoplasias de Próstata Resistentes à Castração , Androstenos , Biomarcadores , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA