Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230775

RESUMO

Despite numerous efforts aiming to characterise glioblastoma pathology (GBM) and discover new therapeutic strategies, GBM remains one of the most challenging tumours to treat. Here we propose the optimisation of in vitro culturing of GBM patient-derived cells, namely the establishment of GBM-derived cultures and their maintenance at oxygen tension mimicking oxygenation conditions occurring within the tumour. To globally analyse cell states, we performed the transcriptome analysis of GBM patient-derived cells kept as spheroids in serum-free conditions at the reduced oxygen tension (5% O2), cells cultured at atmospheric oxygen (20% O2), and parental tumour. Immune cells present in the tumour were depleted, resulting in the decreased expression of the immune system and inflammation-related genes. The expression of genes promoting cell proliferation and DNA repair was higher in GBM cell cultures when compared to the relevant tumour sample. However, lowering oxygen tension to 5% did not affect the proliferation rate and expression of cell cycle and DNA repair genes in GBM cell cultures. Culturing GBM cells at 5% oxygen was sufficient to increase the expression of specific stemness markers, particularly the PROM1 gene, without affecting neural cell differentiation markers. GBM spheroids cultured at 5% oxygen expressed higher levels of hypoxia-inducible genes, including those encoding glycolytic enzymes and pro-angiogenic factors. The genes up-regulated in cells cultured at 5% oxygen had higher expression in parental GBMs compared to that observed in 20% cell cultures, suggesting the preservation of the hypoxic component of GBM transcriptome at 5% oxygen and its loss in standard culture conditions. Evaluation of expression of those genes in The Cancer Genome Atlas dataset comprising samples of normal brain tissue, lower-grade gliomas and GBMs indicated the expression pattern of the indicated genes was specific for GBM. Moreover, GBM cells cultured at 5% oxygen were more resistant to temozolomide, the chemotherapeutic used in GBM therapy. The presented comparison of GBM cultures maintained at high and low oxygen tension together with analysis of tumour transcriptome indicates that lowering oxygen tension during cell culture may more allegedly reproduce tumour cell behaviour within GBM than standard culture conditions (e.g., atmospheric oxygen tension). Low oxygen culture conditions should be considered as a more appropriate model for further studies on glioblastoma pathology and therapy.

2.
J Clin Med ; 11(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233470

RESUMO

Endometriosis is a common gynecological disorder defined as the presence of endometrial-like tissue (glands and stroma) outside the uterus. The etiopathogenesis of endometriosis is still poorly recognized. It is speculated that stage-specific embryonic antigen 1 (SSEA-1)-positive stem-like glandular epithelial cells may contribute to the development of the disease. The synthesis of SSEA-1 is mediated by fucosyltransferase 4 encoded by the FUT4 gene. Therefore, this study aimed to evaluate the specific expression of FUT4 mRNA in biopsies of the endometrium from women with and without endometriosis. FUT4 mRNA levels were examined in 49 women with laparoscopically confirmed endometriosis and 28 controls by means of quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The expression of FUT4 mRNA was significantly increased in the endometrium of patients with endometriosis when compared to the controls (p < 0.0001). Expression of FUT4 mRNA in the endometrium was correlated with the severity of endometriosis (rs = 0.5579, p < 0.0001); however, there were no differences in endometrial FUT4 mRNA expression when comparing endometriotic lesions from various locations. The discriminatory ability of FUT4 mRNA expression was evaluated by receiver-operating characteristics (ROC), which showed high statistical significance (AUC = 0.90, p < 0.0001), thus indicating that an increased level of endometrial FUT4 mRNA may serve as a specific marker for endometriosis.

3.
Cells ; 11(18)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36139418

RESUMO

For many years optimal treatment for dysfunctional skeletal muscle characterized, for example, by impaired or limited regeneration, has been searched. Among the crucial factors enabling its development is finding the appropriate source of cells, which could participate in tissue reconstruction or serve as an immunomodulating agent (limiting immune response as well as fibrosis, that is, connective tissue formation), after transplantation to regenerating muscles. MSCs, including those derived from bone marrow, are considered for such applications in terms of their immunomodulatory properties, as their naive myogenic potential is rather limited. Injection of autologous (syngeneic) or allogeneic BMSCs has been or is currently being tested and compared in many potential clinical treatments. In the present study, we verified which approach, that is, the transplantation of either syngeneic or allogeneic BMSCs or the injection of BMSC-conditioned medium, would be the most beneficial for skeletal muscle regeneration. To properly assess the influence of the tested treatments on the inflammation, the experiments were carried out using immunocompetent mice, which allowed us to observe immune response. Combined analysis of muscle histology, immune cell infiltration, and levels of selected chemokines, cytokines, and growth factors important for muscle regeneration, showed that muscle injection with BMSC-conditioned medium is the most beneficial strategy, as it resulted in reduced inflammation and fibrosis development, together with enhanced new fiber formation, which may be related to, i.e., elevated level of IGF-1. In contrast, transplantation of allogeneic BMSCs to injured muscles resulted in a visible increase in the immune response, which hindered regeneration by promoting connective tissue formation. In comparison, syngeneic BMSC injection, although not detrimental to muscle regeneration, did not result in such significant improvement as CM injection.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Animais , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Fibrose , Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Músculo Esquelético
4.
Altern Lab Anim ; 50(4): 275-281, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35862125

RESUMO

Resources from biobanks and biorepositories, such as human samples, are of increasing interest to specialists in various fields. However, whilst biobanks provide a crucial service, their efficient and effective management can prove challenging. When establishing a biobank many factors should be considered, such as the need for appropriate infrastructure, equipment, financial support, and highly specialised and suitably qualified personnel. The number and qualifications of the necessary personnel depend both on the biobank's size and type - i.e. a biobank that is large and diversified in terms of the stored material should be organised differently to a small biorepository. The core of the biobank should be composed of highly trained personnel that closely co-operate with the general and quality control manager. Due to the large amount of data related to the samples, an IT specialist might be needed. In the case of large population biobanks, personnel responsible for patient recruitment, documentation handling, sample collection and distribution to the biobank would be necessary. Furthermore, staff responsible for the infrastructure are also highly important, as they are the first responders to failures that may be critical for the biobank functioning. Depending on the type and size of the biobank/biorepository, some responsibilities and tasks could potentially be combined. Nevertheless, highly trained personnel with clear and precisely defined duties are the key to the proper functioning of a biobank.


Assuntos
Bancos de Espécimes Biológicos , Manejo de Espécimes , Humanos
5.
Stem Cell Res Ther ; 12(1): 448, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372911

RESUMO

BACKGROUND: The skeletal muscle reconstruction occurs thanks to unipotent stem cells, i.e., satellite cells. The satellite cells remain quiescent and localized between myofiber sarcolemma and basal lamina. They are activated in response to muscle injury, proliferate, differentiate into myoblasts, and recreate myofibers. The stem and progenitor cells support skeletal muscle regeneration, which could be disturbed by extensive damage, sarcopenia, cachexia, or genetic diseases like dystrophy. Many lines of evidence showed that the level of oxygen regulates the course of cell proliferation and differentiation. METHODS: In the present study, we analyzed hypoxia impact on human and pig bone marrow-derived mesenchymal stromal cell (MSC) and mouse myoblast proliferation, differentiation, and fusion. Moreover, the influence of the transplantation of human bone marrow-derived MSCs cultured under hypoxic conditions on skeletal muscle regeneration was studied. RESULTS: We showed that bone marrow-derived MSCs increased VEGF expression and improved myogenesis under hypoxic conditions in vitro. Transplantation of hypoxia preconditioned bone marrow-derived MSCs into injured muscles resulted in the improved cell engraftment and formation of new vessels. CONCLUSIONS: We suggested that SDF-1 and VEGF secreted by hypoxia preconditioned bone marrow-derived MSCs played an essential role in cell engraftment and angiogenesis. Importantly, hypoxia preconditioned bone marrow-derived MSCs more efficiently engrafted injured muscles; however, they did not undergo myogenic differentiation.


Assuntos
Células-Tronco Mesenquimais , Animais , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Hipóxia , Camundongos , Músculo Esquelético , Mioblastos , Células-Tronco , Suínos
6.
Cells ; 10(5)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925059

RESUMO

Mesenchymal stem cells have generated a great deal of interest due to their potential use in regenerative medicine and tissue engineering. Examples illustrating their therapeutic value across various in vivo models are demonstrated in the literature. However, some clinical trials have not proved their therapeutic efficacy, showing that translation into clinical practice is considerably more difficult and discrepancies in clinical protocols can be a source of failure. Among the critical factors which play an important role in MSCs' therapeutic efficiency are the method of preservation of the stem cell viability and various characteristics during their storage and transportation from the GMP production facility to the patient's bedside. The cell storage medium should be considered a key factor stabilizing the environment and greatly influencing cell viability and potency and therefore the effectiveness of advanced therapy medicinal product (ATMP) based on MSCs. In this review, we summarize data from 826 publications concerning the effect of the most frequently used cell preservation solutions on MSC potential as cell-based therapeutic medicinal products.


Assuntos
Temperatura Baixa , Criopreservação/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Medicina Regenerativa , Sobrevivência Celular , Humanos
7.
Cells ; 9(7)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629962

RESUMO

The successful implementation of adipose-derived mesenchymal stem cells (ADSCs) in bone regeneration depends on efficient osteogenic differentiation. However, a literature survey and our own experience demonstrated that current differentiation methods are not effective enough. Since the differentiation of mesenchymal stem cells (MSCs) into osteoblasts and adipocytes can be regulated by cyclic adenosine monophosphate (cAMP) signaling, we investigated the effects of cAMP activator, forskolin, and inhibitor, SQ 22,536, on the early and late osteogenic differentiation of ADSCs cultured in spheroids or in a monolayer. Intracellular cAMP concentration, protein kinase A (PKA) activity, and inhibitor of DNA binding 2 (ID2) expression examination confirmed cAMP up- and downregulation. cAMP upregulation inhibited the cell cycle and protected ADSCs from osteogenic medium (OM)-induced apoptosis. Surprisingly, the upregulation of cAMP level at the early stages of osteogenic differentiation downregulated the expression of osteogenic markers RUNX2, Osterix, and IBSP, which was more significant in spheroids, and it is used for the more efficient commitment of ADSCs into preosteoblasts, according to the previously reported protocol. However, cAMP upregulation in a culture of ADSCs in spheroids resulted in significantly increased osteocalcin production and mineralization. Thus, undifferentiated and predifferentiated ADSCs respond differently to cAMP pathway stimulation in terms of osteogenesis, which might explain the ambiguous results from the literature.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , AMP Cíclico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteocalcina/genética , Osteocalcina/metabolismo , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo , Regulação para Cima
8.
Am J Cardiol ; 125(3): 415-419, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785772

RESUMO

Visfatin is an adipokine produced by visceral fat tissue and takes part in fibrosis and inflammatory response. In the heart muscle, it is connected with the progression of atherosclerosis. Currently, there is no data on how visfatin affects atrial fibrillation (AF) onset. The study aimed to establish if baseline visfatin levels are connected with the risk of arrhythmia recurrence after AF ablation. In this prospective, long-term, observational study, we enrolled 290 consecutive patients admitted for AF ablation. All patients were screened for cardiovascular risk factors and had blood serum taken to measure visfatin concentrations before the ablation procedure. The end point of the study was a recurrence of the AF, defined as at least one AF episode of at any moment during the follow-up period. The screening included AF of at least 30 second duration assessed with electrocardiogram (ECG) monitoring, including 24-hour ECG Holter monitoring, implantable pacemakers, implantable defibrillators, or subcutaneous ECG monitoring devices. After excluding patients disqualified from the procedure the study population consisted of 236 patients, mean age 57.8 years (64.8% male). Mean body mass index in the population was 29.6 ± 4.8 kg/m2 and arterial hypertension was highly prevalent (73.3% of patients). In 129 (54.7%) cases we observed recurrence of AF during the follow-up period. Patients with AF recurrence had higher visfatin levels (1.7 ± 2.4 vs 2.1 ± 1.9 ng/ml; p <0.0001) and multivariate logistic regression analysis containing age, sex, and other independent variables showed that patients with elevated visfatin levels were almost 3-time more likely to experience AF recurrence (odds ratio 2.92; 95% confidence interval 1.60 to 5.32). In conclusion, patients with higher visfatin levels are at elevated risk of arrhythmia recurrence after ablation for AF. Visfatin can be a useful marker for risk stratification in this group of patients.


Assuntos
Fibrilação Atrial/sangue , Ablação por Cateter , Nicotinamida Fosforribosiltransferase/sangue , Fibrilação Atrial/cirurgia , Biomarcadores/sangue , Eletrocardiografia Ambulatorial , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Recidiva , Fatores de Risco
9.
Biomed Res Int ; 2015: 430847, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25861624

RESUMO

Around 5 million annual births in EU and 131 million worldwide give a unique opportunity to collect lifesaving Wharton's jelly derived mesenchymal stem cells (WJ-MSC). Evidences that these cells possess therapeutic properties are constantly accumulating. Collection of WJ-MSC is done at the time of delivery and it is easy and devoid of side effects associated with collection of adult stem cells from bone marrow or adipose tissue. Likewise, their rate of proliferation, immune privileged status, lack of ethical concerns, nontumorigenic properties make them ideal for both autologous and allogeneic use in regenerative medicine applications. This review provides an outline of the recent findings related to WJ-MSC therapeutic effects and possible advantage they possess over MSC from other sources. Results of first clinical trials conducted to treat immune disorders are highlighted.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Geleia de Wharton/fisiologia , Tecido Adiposo/fisiologia , Células-Tronco Adultas/fisiologia , Animais , Proliferação de Células/fisiologia , Humanos , Medicina Regenerativa/métodos
10.
Dev Cell ; 30(3): 255-67, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25087893

RESUMO

D-type cyclins (D1, D2, and D3) are components of the mammalian core cell-cycle machinery and function to drive cell proliferation. Here, we report that D-cyclins perform a rate-limiting antiapoptotic function in vivo. We found that acute shutdown of all three D-cyclins in bone marrow of adult mice resulted in massive apoptosis of all hematopoietic cell types. We demonstrate that adult hematopoietic stem cells are particularly dependent on D-cyclins for survival and that they are especially sensitive to cyclin D loss. Surprisingly, we found that the antiapoptotic function of D-cyclins also operates in quiescent hematopoietic stem and progenitor cells. Our analyses revealed that D-cyclins repress the expression of the death receptor Fas and its ligand, FasL. Acute ablation of D-cyclins upregulated these proapoptotic genes and led to Fas- and caspase 8-dependent apoptosis. These results reveal an unexpected function of cell-cycle proteins in controlling apoptosis in normal cell homeostasis.


Assuntos
Apoptose/genética , Ciclinas/metabolismo , Proteína Ligante Fas/metabolismo , Células-Tronco Hematopoéticas/citologia , Receptor fas/metabolismo , Animais , Caspase 8/metabolismo , Ciclo Celular/genética , Proliferação de Células , Ciclina D1/genética , Ciclinas/genética , Proteína Ligante Fas/genética , Células-Tronco Hematopoéticas/metabolismo , Ligantes , Camundongos , Camundongos Knockout , Receptor fas/genética
11.
Dev Biol ; 385(2): 328-39, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24184637

RESUMO

The mammalian genome encodes two A-type cyclins, which are considered potentially redundant yet essential regulators of the cell cycle. Here, we tested requirements for cyclin A1 and cyclin A2 function in cerebellar development. Compound conditional loss of cyclin A1/A2 in neural progenitors resulted in severe cerebellar hypoplasia, decreased proliferation of cerebellar granule neuron progenitors (CGNP), and Purkinje (PC) neuron dyslamination. Deletion of cyclin A2 alone showed an identical phenotype, demonstrating that cyclin A1 does not compensate for cyclin A2 loss in neural progenitors. Cyclin A2 loss lead to increased apoptosis at early embryonic time points but not at post-natal time points. In contrast, neural progenitors of the VZ/SVZ did not undergo increased apoptosis, indicating that VZ/SVZ-derived and rhombic lip-derived progenitor cells show differential requirements to cyclin A2. Conditional knockout of cyclin A2 or the SHH proliferative target Nmyc in CGNP also resulted in PC neuron dyslamination. Although cyclin E1 has been reported to compensate for cyclin A2 function in fibroblasts and is upregulated in cyclin A2 null cerebella, cyclin E1 expression was unable to compensate for loss-of cyclin A2 function.


Assuntos
Córtex Cerebral/embriologia , Ciclina A2/fisiologia , Animais , Proliferação de Células , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Ciclina A2/genética , Ciclina A2/metabolismo , Hibridização In Situ , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo
12.
Biores Open Access ; 2(5): 356-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24083091

RESUMO

It is expected that use of adult multipotential mesenchymal stem cells (MSCs) for bone tissue engineering (TE) will lead to improvement of TE products. Prior to clinical application, biocompatibility of bone TE products need to be tested in vitro and in vivo. In orthopedic research, sheep are a well-accepted model due to similarities with humans and are assumed to be predictive of human outcomes. In this study we uncover differences between human and ovine bone marrow-derived MSCs (BMSCs) and adipose tissue-derived MSCs (ADSCs) in response to osteogenic media. Osteogenic differentiation of BMSCs and ADSCs was monitored by alkaline phosphatase (ALP) activity and calcium deposition. Mineralization of ovine BMSC was achieved in medium containing NaH2PO4 as a source of phosphate ions (Pi), but not in medium containing ß-glycerophosphate (ß-GP), which is most often used. In a detailed study we found no induction of ALP activity in ovine BMSCs and ADSCs upon osteogenic stimulation, which makes ß-GP an unsuitable source of phosphate ions for ovine cells. Moreover, mineralization of human ADSCs was more efficient in osteogenic medium containing NaH2PO4. These results indicate major differences between ovine and human MSCs and suggest that standard in vitro osteogenic differentiation techniques may not be suitable for all types of cells used in cell-based therapies. Since mineralization is a widely accepted marker of the osteogenic differentiation and maturation of cells in culture, it may lead to potentially misleading results and should be taken into account at the stage of planning and interpreting preclinical observations performed in animal models. We also present a cell culture protocol for ovine ADSCs, which do not express ALP activity and do not mineralize under routine pro-osteogenic conditions in vitro. We plan to apply it in preclinical experiments of bone tissue-engineered products performed in an ovine model.

13.
J Mater Sci Mater Med ; 24(11): 2651-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077995

RESUMO

Despite the great enthusiasm about tissue engineering during the 1980s and the many significant basic observations made since then, the clinical application of tissue-engineered products has been limited. However, the prospect of creating new human tissues and organs is still exciting and continues to be a significant challenge for scientists and clinicians. A human arm is an extremely complicated biological construction. Considering regrowing a human arm requires asking about the current state-of-the-art of tissue engineering and the real capabilities that it may offer within a realistic time horizon. This work briefly addresses the state-of-the-art in the fields of cells and scaffolds that have high regenerative potential. Additional tools that are required to reconstruct more complex parts of the body, such as a human arm, seem achievable with the already available more sophisticated culture systems including three-dimensional organization, dynamic conditions and co-cultures. Finally, we present results on cell differentiation and cell and tissue maturation in culture when cells are exposed to mechanical forces. We postulate that in the foreseeable future even such complicated structures such as a human arm will be regrown in full in vitro under the conditions of a mechanically controlled co-culture system.


Assuntos
Braço/fisiologia , Regeneração , Diferenciação Celular , Humanos , Engenharia Tecidual
14.
Nat Cell Biol ; 14(11): 1192-202, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23064266

RESUMO

The endocycle is a variant cell cycle consisting of successive DNA synthesis and gap phases that yield highly polyploid cells. Although essential for metazoan development, relatively little is known about its control or physiologic role in mammals. Using lineage-specific cre mice we identified two opposing arms of the E2F program, one driven by canonical transcription activation (E2F1, E2F2 and E2F3) and the other by atypical repression (E2F7 and E2F8), that converge on the regulation of endocycles in vivo. Ablation of canonical activators in the two endocycling tissues of mammals, trophoblast giant cells in the placenta and hepatocytes in the liver, augmented genome ploidy, whereas ablation of atypical repressors diminished ploidy. These two antagonistic arms coordinate the expression of a unique G2/M transcriptional program that is critical for mitosis, karyokinesis and cytokinesis. These results provide in vivo evidence for a direct role of E2F family members in regulating non-traditional cell cycles in mammals.


Assuntos
Ciclo Celular/fisiologia , Fatores de Transcrição E2F/metabolismo , Animais , Ciclo Celular/genética , Imunoprecipitação da Cromatina , Fatores de Transcrição E2F/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo , Feminino , Citometria de Fluxo , Células Gigantes/citologia , Células Gigantes/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Gravidez , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Trofoblastos/metabolismo
16.
Cell ; 138(2): 352-65, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19592082

RESUMO

Cyclins are regulatory subunits of cyclin-dependent kinases. Cyclin A, the first cyclin ever cloned, is thought to be an essential component of the cell-cycle engine. Mammalian cells encode two A-type cyclins, testis-specific cyclin A1 and ubiquitously expressed cyclin A2. Here, we tested the requirement for cyclin A function using conditional knockout mice lacking both A-type cyclins. We found that acute ablation of cyclin A in fibroblasts did not affect cell proliferation, but led to prolonged expression of another cyclin, cyclin E, across the cell cycle. However, combined ablation of all A- and E-type cyclins extinguished cell division. In contrast, cyclin A function was essential for cell-cycle progression of hematopoietic and embryonic stem cells. Expression of cyclin A is particularly high in these compartments, which might render stem cells dependent on cyclin A, whereas in fibroblasts cyclins A and E play redundant roles in cell proliferation.


Assuntos
Ciclina A/metabolismo , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Ciclina A/genética , Ciclina E/genética , Ciclina E/metabolismo , Camundongos , Camundongos Knockout
17.
Biol Reprod ; 79(6): 1102-10, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18753610

RESUMO

During meiotic maturation, the majority of oocytes from LT/Sv mice arrest at metaphase I. However, anaphase may be induced through parthenogenetic activation. If this happens within the ovary, it often results in the development of ovarian teratomas. Here, we show that the induction of first meiotic anaphase in LT/Sv oocytes results in incorrect chromosome segregation. In search of the molecular basis of this complex phenotype, we analyzed the localization/destruction of cohesins, as well as the function of the components of the spindle assembly checkpoint (SAC). Both localization and removal of meiotic cohesin REC8 from chromosomes are unperturbed. In contrast, there is prolonged localization of SAC proteins BUB1 and MAD2L1 (MAD2) at the metaphase I kinetochores in mutant oocytes compared with the wild-type. Interfering with BUB1 function through expression of a dominant-negative mutant protein resulted in the increase of the number of LT/Sv oocytes completing the first meiosis, which indicates SAC involvement in metaphase I arrest. These data show for the first time that there is a direct link between the SAC function and the heritable meiotic incompetence of a mammalian oocyte.


Assuntos
Metáfase/fisiologia , Oócitos/fisiologia , Fuso Acromático/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Anáfase/fisiologia , Animais , Antineoplásicos/farmacologia , Calcimicina/farmacologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/fisiologia , Cromossomos/efeitos dos fármacos , Cromossomos/ultraestrutura , Feminino , Imunofluorescência , Meiose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Nocodazol/farmacologia , RNA/biossíntese , RNA/genética , Fuso Acromático/ultraestrutura , Coesinas
18.
Genes Dev ; 16(24): 3277-89, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12502747

RESUMO

D-cyclins (cyclins D1, D2, and D3) are components of the core cell cycle machinery. To directly test the ability of each D-cyclin to drive development of various lineages, we generated mice expressing only cyclin D1, or only cyclin D2, or only cyclin D3. We found that these "single-cyclin" embryos develop normally until late gestation. Our analyses revealed that in single-cyclin embryos, the tissue-specific expression pattern of D-cyclins was lost. Instead, mutant embryos ubiquitously expressed the remaining D-cyclin. These findings suggest that the functions of the three D-cyclins are largely exchangeable at this stage. Later in life, single-cyclin mice displayed focused abnormalities, resulting in premature mortality. "Cyclin D1-only" mice developed severe megaloblastic anemia, "cyclin D2-only" mice presented neurological abnormalities, and "cyclin D3-only" mice lacked normal cerebella. Analyses of the affected tissues revealed that these compartments failed to sufficiently up-regulate the remaining, intact D-cyclin. In particular, we found that in cerebellar granule neuron precursors, the N-myc transcription factor communicates with the cell cycle machinery via cyclins D1 and D2, but not D3, explaining the inability of D3-only mice to up-regulate cyclin D3 in this compartment. Hence, the requirement for a particular cyclin in a given tissue is likely caused by specific transcription factors, rather than by unique properties of cyclins.


Assuntos
Anemia Megaloblástica/metabolismo , Cerebelo/anormalidades , Ciclina D1/fisiologia , Ciclinas/fisiologia , Doenças do Sistema Nervoso/metabolismo , Anemia Megaloblástica/patologia , Animais , Western Blotting , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Cerebelo/patologia , Ciclina D2 , Ciclina D3 , Embrião de Mamíferos/anormalidades , Desenvolvimento Embrionário e Fetal , Feminino , Genes myc , Hibridização In Situ , Masculino , Camundongos , Camundongos Knockout , Doenças do Sistema Nervoso/patologia , Gravidez , RNA Mensageiro , Proteína do Retinoblastoma/metabolismo , Retroviridae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA