Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37383349

RESUMO

Researchers need a rich trove of genomic datasets that they can leverage to gain a better understanding of the genetic basis of the human genome and identify associations between phenol-types and specific parts of DNA. However, sharing genomic datasets that include sensitive genetic or medical information of individuals can lead to serious privacy-related consequences if data lands in the wrong hands. Restricting access to genomic datasets is one solution, but this greatly reduces their usefulness for research purposes. To allow sharing of genomic datasets while addressing these privacy concerns, several studies propose privacy-preserving mechanisms for data sharing. Differential privacy is one of such mechanisms that formalize rigorous mathematical foundations to provide privacy guarantees while sharing aggregated statistical information about a dataset. Nevertheless, it has been shown that the original privacy guarantees of DP-based solutions degrade when there are dependent tuples in the dataset, which is a common scenario for genomic datasets (due to the existence of family members). In this work, we introduce a new mechanism to mitigate the vulnerabilities of the inference attacks on differentially private query results from genomic datasets including dependent tuples. We propose a utility-maximizing and privacy-preserving approach for sharing statistics by hiding selective SNPs of the family members as they participate in a genomic dataset. By evaluating our mechanism on a real-world genomic dataset, we empirically demonstrate that our proposed mechanism can achieve up to 40% better privacy than state-of-the-art DP-based solutions, while near-optimally minimizing utility loss.

2.
Bioinformatics ; 34(2): 181-189, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28968635

RESUMO

MOTIVATION: Rapid and low cost sequencing of genomes enabled widespread use of genomic data in research studies and personalized customer applications, where genomic data is shared in public databases. Although the identities of the participants are anonymized in these databases, sensitive information about individuals can still be inferred. One such information is kinship. RESULTS: We define two routes kinship privacy can leak and propose a technique to protect kinship privacy against these risks while maximizing the utility of shared data. The method involves systematic identification of minimal portions of genomic data to mask as new participants are added to the database. Choosing the proper positions to hide is cast as an optimization problem in which the number of positions to mask is minimized subject to privacy constraints that ensure the familial relationships are not revealed. We evaluate the proposed technique on real genomic data. Results indicate that concurrent sharing of data pertaining to a parent and an offspring results in high risks of kinship privacy, whereas the sharing data from further relatives together is often safer. We also show arrival order of family members have a high impact on the level of privacy risks and on the utility of sharing data. AVAILABILITY AND IMPLEMENTATION: https://github.com/tastanlab/Kinship-Privacy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA