Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Sci Nutr ; 10(11): 3842-3854, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36348775

RESUMO

We examined whether surplus dietary selenium (Se) supply could alleviate high concentrate (HC) diet-induced hepatic oxidative stress (OS) and inflammation. Eighteen young goats were distributed into three groups; were fed low (LC, concentrate: forage; 35: 65), high concentrate (HC, 65: 35), or Se-supplemented HC (HCSe, 65: 35 + 0.5 mg Se kg-1 diet) diets for 10 weeks. Short chain fatty acids, OS markers and immunoinflammatory genes expressions were assessed through gas chromatograph, kits, and RT-qPCR, respectively. Compared with LC, HC diet increased (p < .05) colonic and serum lipopolysaccharide (LPS) levels and induced hepatic oxidative injury by increasing (p < .05) malondialdehyde (MDA) levels and decreasing (p < .05) activities of glutathione peroxidase, superoxide dismutase, and catalase. HC diet altered hepatic mRNA expressions of toll-like receptor-4 (TLR-4), cluster of differentiation-14 (CD-14), tumor necrosis factor-α (TNF-α), TNF receptor-associated factor-6 (TRAF-6), nuclear factor kappa B (NF-κB), interleukin-1ß (IL-1ß), IL-10, IL-13, LPS-binding protein (LBP), serum amyloid A (SAA), α-acid glycoprotein (AGP), and albumin (ALB). Conversely, extra-Se supply lowered LPS and attenuated antioxidant status and inflammation in liver. In conclusion, HC diet induced oxidative lesions and TLR-4 pathway-mediated inflammation, whereas supranutritional Se alleviated oxidative and inflammatory lesions through TLR-4 pathway regulation in goat liver.

2.
Biomed Res Int ; 2022: 6209047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872845

RESUMO

Materials and Methods: Three hundred sixty (n = 360) broiler chickens were equally divided into control (C) and thiram (T) groups. Furthermore, the C and T groups were dividedinto 8-, 9-, 11-, and 13-day-old chickens. Results: Clinically, it was observed that broiler chickens of group T had abnormal posture, gait, and lameness, and histopathological results revealed dead and abnormal chondrocytes of T group on day 6. Real-time qPCR results showed that HDAC1, MTA1, H4, and PCNA genes were significantly expressed (P < 0.05). HDAC1 was upregulated on days 1, 2, 4, and 6 (P < 0.01); MTA1 was upregulated on days 1 and 2 (P < 0.01); H4 was upregulated on days 2 and 4 (P < 0.01), and PCNA was downregulated on days 1, 2, and 4 (P < 0.01). Furthermore, IHC results of HDAC1 protein were significantly (P < 0.01) expressed in proliferative zone of day 1 and hypertrophic zone of day 6. MTA1 protein was significantly (P < 0.01) expressed on days 1, 2, and 6 in all zones, except prehypertrophic zone of day 2. Conclusion: In conclusion, the mRNA expressions of HDAC1, MTA1, H4, and PCNA were differentially expressed in the chondrocytes of thiram-induced TD chickens. HDAC1 and MTA1 protein expression found involved and responsible in the abnormal chondrocytes' proliferation of broiler chicken.


Assuntos
Osteocondrodisplasias , Doenças das Aves Domésticas , Animais , Proliferação de Células/genética , Galinhas/genética , Lâmina de Crescimento/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Tiram/toxicidade , Tíbia/patologia
3.
BMC Genomics ; 23(1): 323, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459093

RESUMO

BACKGROUND: Tibial dyschondroplasia (TD) is a bone disorder in which dead chondrocytes accumulate as a result of apoptosis and non-vascularization in the tibial bone of broiler chickens. The pathogenicity of TD is under extensive research but is yet not fully understood. Several studies have linked it to apoptosis and non-vascularization in the tibial growth plate (GP). We conceived the idea to find the differentially expressed genes (DEGs) in chicken erythrocytes which vary in expression over time using a likelihood-ratio test (LRT). Thiram was used to induce TD in chickens, and then injected Ex-FABP protein at 0, 20, and 50 µg.kg-1 to evaluate its therapeutic effect on 30 screened immunity and angiogenesis-related genes using quantitative PCR (qPCR). The histopathology was also performed in TD chickens to explore the shape, circularity, arrangements of chondrocytes and blood vessels. RESULTS: Clinical lameness was observed in TD chickens, which decreased with the injection of Ex-FABP. Histopathological findings support Ex-FABP as a therapeutic agent for the morphology and vascularization of affected chondrocytes in TD chickens. qPCR results of 10 immunity (TLR2, TLR3, TLR4, TLR5, TLR7, TLR15, IL-7, MyD88, MHCII, and TRAF6) and 20 angiogenesis-related genes (ITGAV, ITGA2, ITGB2, ITGB3, ITGA5, IL1R1, TBXA2R, RPL17, F13A1, CLU, RAC2, RAP1B, GIT1, FYN, IQGAP2, PTCH1, NCOR2, VAV-like, PTPN11, MAML3) regulated when Ex-FABP is injected to TD chickens. CONCLUSION: Immunity and angiogenesis-related genes can be responsible for apoptosis of chondrocytes and vascularization in tibial GP. Injection of Ex-FABP protein to thiram induced TD chickens decrease the chondrocytes damage and improves vascularization.


Assuntos
Osteocondrodisplasias , Doenças das Aves Domésticas , Animais , Biomarcadores , Galinhas/genética , Galinhas/metabolismo , Eritrócitos/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/farmacologia , Lâmina de Crescimento/metabolismo , Neovascularização Patológica/patologia , Osteocondrodisplasias/patologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/patologia , Tiram , Tíbia , Transcriptoma
4.
BMC Vet Res ; 16(1): 462, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246474

RESUMO

BACKGROUND: High concentrate (HC) diet-induced oxidative stress causes gut epithelial damages associated with apoptosis. Selenium (Se) being an integral component of glutathione peroxidase (GSH-Px) plays an important role in antioxidant defense system. Therefore, increasing dietary Se level would alleviate HC diet-induced injuries in gut mucosa. The present study investigated eighteen cross-bred goats, randomly divided into three groups (n = 6/group) fed either low concentrate (LC, roughage: concentrate ratio 65:35), high concentrate (HC, 35:65) or HC plus Se (HC-SY) diets for 10 weeks. Se was supplemented at the dose rate of 0.5 mg Se kg- 1 diet in the form of selenium yeast. The background Se level in HC and LC diets were 0.15 and 0.035 mg.kg- 1 diet, respectively. The Se at the dose of 0.115 mg.kg- 1 diet was added in LC diet to make its concentration equivalent to HC diet and with the supplementation of 0.5 mg Se kg- 1, the goats in group HC-SY received total Se by 0.65 mg.kg- 1 diet. RESULTS: The molar concentrations of individual and total short chain fatty acids (TSCFA) significantly increased (P < 0.05) with simultaneous decrease in pH of colonic fluid in goats of HC and HC-SY groups compared with LC goats. HC diet induced loss of epithelial integrity, inflammation and loss of goblet cells in colonic mucosa associated with higher lipopolysaccharide (LPS) concentrations in colonic fluid whereas, the addition of SY in HC diet alleviated such damaging changes. Compared with LC, the HC diet elevated malondialdehyde (MDA) level with concurrent decrease in GSH-Px and superoxide dismutase (SOD) activities, while SY supplementation attenuated these changes and improved antioxidant status in colonic epithelium. Moreover, epithelial injury and oxidative stress in colon of HC goats were associated with increased apoptosis as evidenced by downregulation of bcl2 and upregulation of bax, caspases 3 and 8 mRNA expressions compared with LC goats. On contrary, addition of SY in HC (HC-SY) diet alleviated these changes by modulating expression of apoptotic genes in colonic epithelium. CONCLUSIONS: Our data suggest that supranutritional level of Se attenuates HC diet-induced oxidative stress and apoptosis and thereby minimizes the epithelial injury in colon of goats.


Assuntos
Ração Animal/efeitos adversos , Cabras/fisiologia , Selênio/administração & dosagem , Ração Animal/análise , Animais , Apoptose/efeitos dos fármacos , Colo/efeitos dos fármacos , Dieta/veterinária , Ácidos Graxos Voláteis/metabolismo , Feminino , Mucosa Intestinal/efeitos dos fármacos , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA