Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 271: 115974, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266357

RESUMO

Biodegradable plastics (BPs) are widely used as alternatives to non-BPs due to their inherent ability to undergo facile degradation. However, the ecotoxicological impact of biodegradable microplastics (MPs) rarely remains scientific documented especially to aquatic ecosystem and organisms compared to conventional microplastics. Therefore, this study aimed to investigate the ecotoxicity of biodegradable polylactic acid (PLA) MPs to Daphnia magna with that of conventional polyethylene (PE) MPs with and without ultraviolet (UV) treatment (4 weeks). The acute toxicity (48 h) of PLA MPs was significantly higher than that of PE MPs, potentially attributable to their elevated bioconcentration resulting from their higher density. UV treatment notably reduced the particle size of PLA MPs and induced new hydrophilic functional groups containing oxygen. Thus, the acute lethal toxicity of PLA MPs exhibited noteworthy increase, compared to before UV treatment after UV treatment, which was greater than that of UV-PE MPs. In addition, UV-PLA MPs showed markedly elevated reactive oxygen species concentration in D. magna compared to positive control. However, there was no significant increase in the level of lipid peroxidation, possibly due to successful defense by antioxidant enzymes (superoxide dismutase and catalase). These findings highlight the ecotoxicological risks of biodegradable MPs to aquatic organisms, which require comprehensive long-term studies.


Assuntos
Daphnia magna , Poluentes Químicos da Água , Animais , Ecossistema , Microplásticos/toxicidade , Plásticos , Polietileno/toxicidade , Poliésteres , Poluentes Químicos da Água/toxicidade , Daphnia
2.
Environ Res ; 224: 115532, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822531

RESUMO

Copper sulfate (CuSO4) is actively used to control the proliferation of harmful algal blooms because of its fast and effective killing mechanism. However, its use unintentionally harms innocuous aquatic organisms. Therefore, there is a need to find non-toxic solutions for controlling algal blooms. In this study, Cu-based metal-organic framework (Cu-BDC MOF) chips (ca. 2 × 2 cm) were synthesized using waste polyethylene terephthalate (PET) bottles. The as-synthesized Cu-BDC MOF chips efficiently inhibited the cyanobacteria species Microcystis aeruginosa, which was comparable to the conventional dose of CuSO4 algaecide (1.00 mg L-1). Moreover, unlike the CuSO4 algaecide, Cu-BDC MOF chips did not cause any acute toxicity (48 h) to the water flea Daphnia magna. Both Cu-BDC MOF and Cu2O seemed to be responsible for the generation of reactive oxygen species, which resulted in the aggregation, photosynthesis disruption, and eventually growth inhibition of M. aeruginosa. This study suggests that the environmentally safe Cu-BDC MOF chip is a promising agent to sustainably control harmful algal blooms.


Assuntos
Cianobactérias , Herbicidas , Estruturas Metalorgânicas , Polietilenotereftalatos/farmacologia , Proliferação Nociva de Algas , Cobre
3.
Chemosphere ; 308(Pt 3): 136450, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115479

RESUMO

Polymer-derived carbon nanohybrids present a remarkable potential for the elimination of water pollutants. Herein, an Fe-modified C, N, and S (Fe@NSC) nanohybrid network, synthesized via polymerization of aniline followed by calcination, is used for As removal from aquatic media. The Langmuir isotherm and pseudo-second-order kinetic models fit well the experimental data for the adsorptive removal of As(III) and As(V) by the as-synthesized Fe@NSC nanohybrid, indicating that adsorption is a monolayer chemisorption process. The maximum adsorption capacities of the fabricated Fe@NSC nanohybrid for As(III) and As(V) were 129.54 and 178.65 mg/g, respectively, which are considerably higher than those reported previously for other adsorbents. In particular, the Fe3O4/FeS nanoparticles (18.4-38.7 nm) of the prepared Fe@NSC nanohybrid play a critical role in As adsorption and oxidation. Spectroscopy data indicate that the adsorption of As on Fe@NSC nanohybrid involved oxidation, ligand exchange, surface complexation, and electrostatic attraction. Furthermore, the magnetic Fe@NSC nanohybrid was easily separated after As adsorption using an external magnet and did not induce acute toxicity (48 h) in Daphnia magna. Moreover, the Fe@NSC nanohybrid selectively removed As species in the presence of competing anions and was effectively regenerated for up to three cycles using a 0.1 M HNO3 solution. These findings suggest that Fe@NSC nanohybrid is a promising adsorbent for As remediation in aquatic media.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Compostos de Anilina , Arsênio/análise , Carbono , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Fenômenos Magnéticos , Polímeros , Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
4.
Chemosphere ; 294: 133672, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35063562

RESUMO

Metal-organic frameworks (MOFs) derived from recycled polyester (polyethylene terephthalate, PET) bottles were investigated in both batch and column studies for the removal of arsenate. As-synthesized Fe-MOF, Zr-MOF, and La-MOF were systematically analyzed by SEM, PXRD, FTIR, BET, and XPS techniques. The obtained MOFs showed high crystallinity with the specific surface areas of 128.3, 290.4, and 61.8 m2/g for Fe-MOF, Zr-MOF, and La-MOF, respectively. The Langmuir isotherm and pseudo-second-order kinetic model simulated arsenate adsorption on MOF materials well, which can be explained by electrostatic interactions, surface complexation, and ligand exchange mechanisms. The maximum adsorption capacities of arsenate onto Fe-MOF, Zr-MOF, and La-MOF were found to be 70.02, 85.72, and 114.28 mg/g at pH 7, respectively. The effect of pH and co-existing anions on the arsenate adsorption on MOF materials was also evaluated for practical applications. The MOF materials showed reduced adsorption capacity for arsenate by less than 10% up to four cycles of regeneration and did not induce any significant (p > 0.05) acute toxicity (<2.5% mortality) in Daphnia magna. In a flow-through system, Fe-MOF, Zr-MOF, and La-MOF were used to treat 176, 255, and 398 mL bed volumes of arsenate contaminated water, respectively, and consistently reduced the concentration of arsenate ions from 500 to 10 µg/L. This study clearly demonstrated that MOF materials derived from waste PET bottles are economically promising adsorbents for the successful elimination of arsenate species from aqueous environments.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arseniatos , Plásticos , Poluentes Químicos da Água/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA