Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
iScience ; 27(7): 110244, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39040070

RESUMO

Prior research has suggested that GATA6+ pericardial macrophages may traffic to the myocardium to prevent interstitial fibrosis after myocardial infarction (MI), while subsequent literature claims that they do not. We demonstrate that GATA6+ pericardial macrophages are critical for preventing IL-33 induced pericarditis and attenuate trafficking of inflammatory monocytes and granulocytes to the pericardial cavity after MI. However, absence of GATA6+ macrophages did not affect myocardial inflammation due to MI or coxsackievirus-B3 induced myocarditis, or late-stage cardiac fibrosis and cardiac function post MI. GATA6+ macrophages are significantly less transcriptionally active following stimulation in vitro compared to bone marrow-derived macrophages and do not induce upregulation of inflammatory markers in fibroblasts. This suggests that GATA6+ pericardial macrophages attenuate inflammation through their interactions with surrounding cells. We therefore conclude that GATA6+ pericardial macrophages are critical in modulating pericardial inflammation, but do not play a significant role in controlling myocardial inflammation or fibrosis.

2.
Circ Res ; 134(12): 1767-1790, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843292

RESUMO

Autoimmunity significantly contributes to the pathogenesis of myocarditis, underscored by its increased frequency in autoimmune diseases such as systemic lupus erythematosus and polymyositis. Even in cases of myocarditis caused by viral infections, dysregulated immune responses contribute to pathogenesis. However, whether triggered by existing autoimmune conditions or viral infections, the precise antigens and immunologic pathways driving myocarditis remain incompletely understood. The emergence of myocarditis associated with immune checkpoint inhibitor therapy, commonly used for treating cancer, has afforded an opportunity to understand autoimmune mechanisms in myocarditis, with autoreactive T cells specific for cardiac myosin playing a pivotal role. Despite their self-antigen recognition, cardiac myosin-specific T cells can be present in healthy individuals due to bypassing the thymic selection stage. In recent studies, novel modalities in suppressing the activity of pathogenic T cells including cardiac myosin-specific T cells have proven effective in treating autoimmune myocarditis. This review offers an overview of the current understanding of heart antigens, autoantibodies, and immune cells as the autoimmune mechanisms underlying various forms of myocarditis, along with the latest updates on clinical management and prospects for future research.


Assuntos
Doenças Autoimunes , Miocardite , Miocardite/imunologia , Miocardite/terapia , Miocardite/etiologia , Humanos , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Doenças Autoimunes/tratamento farmacológico , Animais , Autoanticorpos/imunologia , Autoimunidade , Linfócitos T/imunologia , Autoantígenos/imunologia , Miosinas Cardíacas/imunologia
3.
Arthritis Rheumatol ; 76(4): 553-565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37997621

RESUMO

OBJECTIVE: Arthritis associated with immune checkpoint inhibitor therapies highlights the importance of immune checkpoint expression for joint homeostasis. We investigated the role of programmed death ligand (PD-L) 1 in the synovium using a collagen-induced arthritis (CIA) mouse model. METHODS: We blocked PD-L1 using blocking antibodies during CIA and assessed the arthritis severity by clinical and histologic scoring. PD-L1 expression and the origin of synovial macrophages were investigated using flow cytometry and parabiosis. We used Cre-Lox mice to ascertain the protective role of PD-L1-expressing macrophages in arthritis. The immune profile of human and murine synovial PD-L1+ macrophages was determined by reverse transcriptase-polymerase chain reaction, flow cytometry, and single-cell RNA sequencing. RESULTS: Anti-PD-L1 antibody treatment during CIA worsened arthritis with increased immune cell infiltration compared with isotype control, supporting the regulatory role of PD-L1 in the joint. The main cells expressing PD-L1 in the synovium were macrophages. Using parabiosis, we showed that synovial PD-L1+ macrophages were both locally proliferating and partially replaced by the circulation. PD-L1+ macrophages had increased levels of MER proto-oncogene tyrosine kinase (MerTK) and interleukin (IL)-10 expression during acute CIA. Genetic depletion of PD-L1 on macrophages in LyzcrePD-L1fl/fl mice resulted in worsened CIA compared with controls. We found that human PD-L1+ macrophages in the synovium of healthy individuals and patients with rheumatoid arthritis express MerTK and IL-10. CONCLUSION: PD-L1+ macrophages with efferocytotic and anti-inflammatory characteristics protect the synovium from severe arthritis in the CIA mouse model. Tissue-protective, PD-L1-expressing macrophages are also present in the human synovium at homeostasis and during rheumatoid arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Animais , Camundongos , Antígeno B7-H1 , c-Mer Tirosina Quinase/metabolismo , Membrana Sinovial/metabolismo , Modelos Animais de Doenças , Macrófagos
4.
iScience ; 26(10): 107990, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37829205

RESUMO

Hypereosinophilic syndrome is a progressive disease with extensive eosinophilia that results in organ damage. Cardiac pathologies are the main reason for its high mortality rate. A better understanding of the mechanisms of eosinophil-mediated tissue damage would benefit therapeutic development. Here, we describe the cardiac pathologies that developed in a mouse model of hypereosinophilic syndrome. These IL-5 transgenic mice exhibited decreased left ventricular function at a young age which worsened with age. Mechanistically, we demonstrated infiltration of activated eosinophils into the heart tissue that led to an inflammatory environment. Gene expression signatures showed tissue damage as well as repair and remodeling processes. Cardiomyocytes from IL-5Tg mice exhibited significantly reduced contractility relative to wild type (WT) controls. This impairment may result from the inflammatory stress experienced by the cardiomyocytes and suggest that dysregulation of contractility and Ca2+ reuptake in cardiomyocytes contributes to cardiac dysfunction at the whole organ level in hypereosinophilic mice.

5.
Cell Rep ; 41(6): 111611, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351411

RESUMO

Immune checkpoint inhibitors (ICIs) are an effective therapy for various cancers; however, they can induce immune-related adverse events (irAEs) as a side effect. Myocarditis is an uncommon, but fatal, irAE caused after ICI treatments. Currently, the mechanism of ICI-associated myocarditis is unclear. Here, we show the development of myocarditis in A/J mice induced by anti-PD-1 monoclonal antibody (mAb) administration alone without tumor cell inoculation, immunization, or viral infection. Mice with myocarditis have increased cardiac infiltration, elevated cardiac troponin levels, and arrhythmia. Anti-PD-1 mAb treatment also causes irAEs in other organs. Autoimmune T cells recognizing cardiac myosin are activated and increased in mice with myocarditis. Notably, cardiac myosin-specific T cells are present in naive mice, showing a phenotype of antigen-experienced T cells. Collectively, we establish a clinically relevant mouse model for ICI-associated myocarditis and find a contribution of cardiac myosin-specific T cells to ICI-associated myocarditis development and pathogenesis.


Assuntos
Antineoplásicos Imunológicos , Miocardite , Animais , Camundongos , Anticorpos Monoclonais , Miosinas Cardíacas , Inibidores de Checkpoint Imunológico , Miocardite/induzido quimicamente , Miocardite/patologia , Linfócitos T/patologia , Autoimunidade
6.
PLoS Pathog ; 12(2): e1005409, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26845438

RESUMO

Broadly neutralizing antibodies targeting a highly conserved region in the hemagglutinin (HA) stem protect against influenza infection. Here, we investigate the protective efficacy of a protein (HB36.6) computationally designed to bind with high affinity to the same region in the HA stem. We show that intranasal delivery of HB36.6 affords protection in mice lethally challenged with diverse strains of influenza independent of Fc-mediated effector functions or a host antiviral immune response. This designed protein prevents infection when given as a single dose of 6.0 mg/kg up to 48 hours before viral challenge and significantly reduces disease when administered as a daily therapeutic after challenge. A single dose of 10.0 mg/kg HB36.6 administered 1-day post-challenge resulted in substantially better protection than 10 doses of oseltamivir administered twice daily for 5 days. Thus, binding of HB36.6 to the influenza HA stem region alone, independent of a host response, is sufficient to reduce viral infection and replication in vivo. These studies demonstrate the potential of computationally designed binding proteins as a new class of antivirals for influenza.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas de Transporte/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Humanos , Vírus da Influenza A/genética , Influenza Humana/virologia , Camundongos , Modelos Moleculares , Mutação , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA