Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MycoKeys ; 102: 29-54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356850

RESUMO

The Inonotuslinteus complex, predominantly reported from East Asia, Mesoamerica and Caribbean countries, was circumscribed into Tropicoporus as one of the new genera, based on morphological and phylogenetic data. The present paper describes four new species of Tropicoporus from India. Morphological characteristics and phylogenetic analyses, based on ITS and nLSU data, delimited the new species, which are named T.cleistanthicola, T.indicus, T.pseudoindicus and T.tamilnaduensis. The pairwise homoplasy index (PHI) test was done to confirm the distinctive nature of the new species. The traits of Indian species remain distinct from one another, except for the pileate basidiome with the mono-dimitic hyphal system, cystidioles and broadly ellipsoid basidiospores. Descriptions, illustrations, PHI test results and a phylogenetic tree to show the position of the new species are provided. In addition, an identification key to Tropicoporus in Asia and an African species is given.

2.
J Biomol Struct Dyn ; 41(6): 2574-2586, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35109776

RESUMO

Antidiabetic activity of herb Scoparia dulcis Linn (SD) used in traditional medicine is well established, yet, the molecular mechanism is not understood. In this study, in vitro α-glucosidase inhibitory effects of SD aqueous extract and its kinetics were investigated and in silico analysis was carried out. SD showed potent inhibition of α-glucosidase with low IC50value (30 µg/mL). Enzyme kinetics analysis revealed the inhibition to be a mixed type of inhibition. From literature screening, we found that six compounds of SD to exhibit potent anti-diabetic activity, namely apigenin, betulinic acid, hispidulin, luteolin, scopadulcic-acid-B and scutellarein. These compounds were subjected to molecular docking. Docking studies revealed scopadulcic acid B and betulunic acid to show optimum binding constant and low free energy. Molecular dynamics simulation was carried out to further understand the interaction and stability between glucosidase and ligands of SD. Taken together, the study reveals that the potency of SD is due to synergistic effect of active phytochemicals in it and suggest that their properties can be utilized for anti-diabetic treatment strategies.Communicated by Ramaswamy H. Sarma.


Assuntos
Scoparia , alfa-Glucosidases , alfa-Glucosidases/química , Saccharomyces cerevisiae , Scoparia/metabolismo , Simulação de Acoplamento Molecular , Hipoglicemiantes/farmacologia
3.
Fungal Divers ; 117(1): 1-272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36852303

RESUMO

This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise Angustimassarina kunmingense, Asterina lopi, Asterina brigadeirensis, Bartalinia bidenticola, Bartalinia caryotae, Buellia pruinocalcarea, Coltricia insularis, Colletotrichum flexuosum, Colletotrichum thasutense, Coniochaeta caraganae, Coniothyrium yuccicola, Dematipyriforma aquatic, Dematipyriforma globispora, Dematipyriforma nilotica, Distoseptispora bambusicola, Fulvifomes jawadhuvensis, Fulvifomes malaiyanurensis, Fulvifomes thiruvannamalaiensis, Fusarium purpurea, Gerronema atrovirens, Gerronema flavum, Gerronema keralense, Gerronema kuruvense, Grammothele taiwanensis, Hongkongmyces changchunensis, Hypoxylon inaequale, Kirschsteiniothelia acutisporum, Kirschsteiniothelia crustaceum, Kirschsteiniothelia extensum, Kirschsteiniothelia septemseptatum, Kirschsteiniothelia spatiosum, Lecanora immersocalcarea, Lepiota subthailandica, Lindgomyces guizhouensis, Marthe asmius pallidoaurantiacus, Marasmius tangerinus, Neovaginatispora mangiferae, Pararamichloridium aquisubtropicum, Pestalotiopsis piraubensis, Phacidium chinaum, Phaeoisaria goiasensis, Phaeoseptum thailandicum, Pleurothecium aquisubtropicum, Pseudocercospora vernoniae, Pyrenophora verruculosa, Rhachomyces cruralis, Rhachomyces hyperommae, Rhachomyces magrinii, Rhachomyces platyprosophi, Rhizomarasmius cunninghamietorum, Skeletocutis cangshanensis, Skeletocutis subchrysella, Sporisorium anadelphiae-leptocomae, Tetraploa dashaoensis, Tomentella exiguelata, Tomentella fuscoaraneosa, Tricholomopsis lechatii, Vaginatispora flavispora and Wetmoreana blastidiocalcarea. The new combination is Torula sundara. The 39 new records on hosts and geographical distribution comprise Apiospora guiyangensis, Aplosporella artocarpi, Ascochyta medicaginicola, Astrocystis bambusicola, Athelia rolfsii, Bambusicola bambusae, Bipolaris luttrellii, Botryosphaeria dothidea, Chlorophyllum squamulosum, Colletotrichum aeschynomenes, Colletotrichum pandanicola, Coprinopsis cinerea, Corylicola italica, Curvularia alcornii, Curvularia senegalensis, Diaporthe foeniculina, Diaporthe longicolla, Diaporthe phaseolorum, Diatrypella quercina, Fusarium brachygibbosum, Helicoma aquaticum, Lepiota metulispora, Lepiota pongduadensis, Lepiota subvenenata, Melanconiella meridionalis, Monotosporella erecta, Nodulosphaeria digitalis, Palmiascoma gregariascomum, Periconia byssoides, Periconia cortaderiae, Pleopunctum ellipsoideum, Psilocybe keralensis, Scedosporium apiospermum, Scedosporium dehoogii, Scedosporium marina, Spegazzinia deightonii, Torula fici, Wiesneriomyces laurinus and Xylaria venosula. All these taxa are supported by morphological and multigene phylogenetic analyses. This article allows the researchers to publish fungal collections which are important for future studies. An updated, accurate and timely report of fungus-host and fungus-geography is important. We also provide an updated list of fungal taxa published in the previous fungal diversity notes. In this list, erroneous taxa and synonyms are marked and corrected accordingly.

4.
Mycobiology ; 41(4): 248-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24493948

RESUMO

Ganoderma is a cosmopolitan wood-rot basidiomycete that has been extensively studied for its pathogencity and medicinal properties. Identification of Ganoderma based on macro-microscopic features led to large number of synonyms which resulted in 250 taxonomic names. A Ganoderma species collected from Courtallam, Tamil Nadu was identified as G. cupreum. Phylogenetic analysis inferred from internal transcribed spacer rDNA region resolved the Indian isolate MYC1 as Ganoderma cupreum which clustered with Australian and Asian "cupreum" clade with 85% bootstrap support BS and shared 99% and 98% nucleotide similarity with Malaysian and Australian 'cupreum' respectively. This study represents the first molecular evidence of G. cupreum from Asian origin.

5.
Microbiol Res ; 163(3): 286-92, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17462872

RESUMO

The genetic diversity of Ganoderma australe (Fr.) Pat. from southern India was investigated by using ITS1/2 rDNA. The phylogenetic analysis showed that six isolates clustered into two groups viz. biological species I and II. The four strains of BS I (YER03, MYC5, MYC2 and KE) clustered with G. australe TAI-01 and the two other strains of BS II (KMK3 and K39) were grouped with G. australe TAI-05 from Taiwan. The two strains namely TAI-01 and TAI-05 were described as G. australe intersterile Group 1 and 2 from Taiwan, respectively. The higher level nucleotide divergence among BS I and BS II and the high bootstrapping support clearly represent the presence of two biological species of G. australe in southern India which are genetically isolated.


Assuntos
Ganoderma/classificação , Ganoderma/isolamento & purificação , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Ganoderma/genética , Índia , Filogenia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA