Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837761

RESUMO

In response to the evolving treatment landscape for new-onset refractory status epilepticus (NORSE) and the publication of consensus recommendations in 2022, we conducted a comparative analysis of NORSE management over time. Seventy-seven patients were enrolled by 32 centers, from July 2016 to August 2023, in the NORSE/FIRES biorepository at Yale. Immunotherapy was administered to 88% of patients after a median of 3 days, with 52% receiving second-line immunotherapy after a median of 12 days (anakinra 29%, rituximab 25%, and tocilizumab 19%). There was an increase in the use of second-line immunotherapies (odds ratio [OR] = 1.4, 95% CI = 1.1-1.8) and ketogenic diet (OR = 1.8, 95% CI = 1.3-2.6) over time. Specifically, patients from 2022 to 2023 more frequently received second-line immunotherapy (69% vs 40%; OR = 3.3; 95% CI = 1.3-8.9)-particularly anakinra (50% vs 13%; OR = 6.5; 95% CI = 2.3-21.0), and the ketogenic diet (OR = 6.8; 95% CI = 2.5-20.1)-than those before 2022. Among the 27 patients who received anakinra and/or tocilizumab, earlier administration after status epilepticus onset correlated with a shorter duration of status epilepticus (ρ = .519, p = .005). Our findings indicate an evolution in NORSE management, emphasizing the increasing use of second-line immunotherapies and the ketogenic diet. Future research will clarify the impact of these treatments and their timing on patient outcomes.

2.
Epilepsia ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625055

RESUMO

Febrile infection-related epilepsy syndrome (FIRES) is a subset of new onset refractory status epilepticus (NORSE) that involves a febrile infection prior to the onset of the refractory status epilepticus. It is unclear whether FIRES and non-FIRES NORSE are distinct conditions. Here, we compare 34 patients with FIRES to 30 patients with non-FIRES NORSE for demographics, clinical features, neuroimaging, and outcomes. Because patients with FIRES were younger than patients with non-FIRES NORSE (median = 28 vs. 48 years old, p = .048) and more likely cryptogenic (odds ratio = 6.89), we next ran a regression analysis using age or etiology as a covariate. Respiratory and gastrointestinal prodromes occurred more frequently in FIRES patients, but no difference was found for non-infection-related prodromes. Status epilepticus subtype, cerebrospinal fluid (CSF) and magnetic resonance imaging findings, and outcomes were similar. However, FIRES cases were more frequently cryptogenic; had higher CSF interleukin 6, CSF macrophage inflammatory protein-1 alpha (MIP-1a), and serum chemokine ligand 2 (CCL2) levels; and received more antiseizure medications and immunotherapy. After controlling for age or etiology, no differences were observed in presenting symptoms and signs or inflammatory biomarkers, suggesting that FIRES and non-FIRES NORSE are very similar conditions.

3.
Sci Rep ; 12(1): 5397, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354911

RESUMO

In this study, we designed two deep neural networks to encode 16 features for early seizure detection in intracranial EEG and compared them and their frequency responses to 16 widely used engineered metrics to interpret their properties: epileptogenicity index (EI), phase locked high gamma (PLHG), time and frequency domain Cho Gaines distance (TDCG, FDCG), relative band powers, and log absolute band powers (from alpha, beta, theta, delta, low gamma, and high gamma bands). The deep learning models were pretrained for seizure identification on the time and frequency domains of 1 s, single-channel clips of 127 seizures (from 25 different subjects) using "leave-one-out" (LOO) cross validation. Each neural network extracted unique feature spaces that were interpreted using spectral power modulations before being used to train a Random Forest Classifier (RFC) for seizure identification. The Gini Importance of each feature was calculated from the pretrained RFC, enabling the most significant features (MSFs) for each task to be identified. The MSFs were extracted to train another RFC for UPenn and Mayo Clinic's Seizure Detection Kaggle Challenge. They obtained an AUC score of 0.93, demonstrating a transferable method to identify and interpret biomarkers for seizure detection.


Assuntos
Aprendizado Profundo , Epilepsia , Biomarcadores , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA