Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dev Biol ; 9(4)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34940502

RESUMO

The highly conserved HOX homeodomain (HD) transcription factors (TFs) establish the identity of different body parts along the antero-posterior axis of bilaterian animals. Segment diversification and the morphogenesis of different structures is achieved by generating precise patterns of HOX expression along the antero-posterior axis and by the ability of different HOX TFs to instruct unique and specific transcriptional programs. However, HOX binding properties in vitro, characterised by the recognition of similar AT-rich binding sequences, do not account for the ability of different HOX to instruct segment-specific transcriptional programs. To address this problem, we previously compared HOXA2 and HOXA3 binding in vivo. Here, we explore if sequence motif enrichments observed in vivo are explained by binding affinities in vitro. Unexpectedly, we found that the highest enriched motif in HOXA2 peaks was not recognised by HOXA2 in vitro, highlighting the importance of investigating HOX binding in its physiological context. We also report the ability of HOXA2 and HOXA3 to heterodimerise, which may have functional consequences for the HOX patterning function in vivo.

2.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182773

RESUMO

Sepsis is a systemic inflammatory disorder induced by a dysregulated immune response to infection resulting in dysfunction of multiple critical organs, including the intestines. Previous studies have reported contrasting results regarding the abilities of exosomes circulating in the blood of sepsis mice and patients to either promote or suppress inflammation. Little is known about how the gut epithelial cell-derived exosomes released in the intestinal luminal space during sepsis affect mucosal inflammation. To study this question, we isolated extracellular vesicles (EVs) from intestinal lavage of septic mice. The EVs expressed typical exosomal (CD63 and CD9) and epithelial (EpCAM) markers, which were further increased by sepsis. Moreover, septic-EV injection into inflamed gut induced a significant reduction in the messaging of pro-inflammatory cytokines TNF-a and IL-17A. MicroRNA (miRNA) profiling and reverse transcription and quantitative polymerase chain reaction (RT-qPCR) revealed a sepsis-induced exosomal increase in multiple miRNAs, which putatively target TNF-a and IL-17A. These results imply that intestinal epithelial cell (IEC)-derived luminal EVs carry miRNAs that mitigate pro-inflammatory responses. Taken together, our study proposes a novel mechanism by which IEC EVs released during sepsis transfer regulatory miRNAs to cells, possibly contributing to the amelioration of gut inflammation.


Assuntos
Interleucina-17/metabolismo , Mucosa Intestinal/imunologia , Sepse/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Colite/genética , Colite/imunologia , Colite/patologia , Modelos Animais de Doenças , Exossomos/imunologia , Exossomos/patologia , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/patologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-17/antagonistas & inibidores , Interleucina-17/genética , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sepse/genética , Sepse/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética
3.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-31508204

RESUMO

Regional Student Groups (RSGs) of the International Society for Computational Biology Student Council (ISCB-SC) have been instrumental to connect computational biologists globally and to create more awareness about bioinformatics education. This article highlights the initiatives carried out by the RSGs both nationally and internationally to strengthen the present and future of the bioinformatics community. Moreover, we discuss the future directions the organization will take and the challenges to advance further in the ISCB-SC main mission: "Nurture the new generation of computational biologists".


Assuntos
Biologia Computacional , Estudantes , Humanos , Relações Interprofissionais
4.
Front Cell Dev Biol ; 4: 134, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27921030

RESUMO

Stem cells are defined by their capabilities to self-renew and give rise to various types of differentiated cells depending on their potency. They are classified as pluripotent, multipotent, and unipotent as demonstrated through their potential to generate the variety of cell lineages. While pluripotent stem cells may give rise to all types of cells in an organism, Multipotent and Unipotent stem cells remain restricted to the particular tissue or lineages. The potency of these stem cells can be defined by using a number of functional assays along with the evaluation of various molecular markers. These molecular markers include diagnosis of transcriptional, epigenetic, and metabolic states of stem cells. Many reports are defining the particular set of different functional assays, and molecular marker used to demonstrate the developmental states and functional capacities of stem cells. The careful evaluation of all these methods could help in generating standard identifying procedures/markers for them.

5.
Artigo em Inglês | MEDLINE | ID: mdl-27630985

RESUMO

Thrombopoietin receptor (TPOR) is a cytokine receptor protein present on the cell surface. The activation of TPOR by thrombopoietin (TPO) (a glycoprotein hormone) triggers an intracellular cascade of megakaryocytopoiesis for the formation of platelets. Recent studies on ex vivo megakaryocytopoiesis have evolved the possibilities of therapeutics uses. These findings have paved the way for the development of various TPO alternatives (recombinant TPO, peptide, and non-peptide TPO mimetics), which are useful in regenerative medicine. However, these alternatives possess various limitations such as induction of autoimmune effects, high production cost, low specificity, and hence activity. In the present study, a novel peptidic TPO mimetic was designed through computational studies by studying the binding sites of TPO and TMP to TPOR and analogs of known mimetics. Screening of combinatorial library was done through molecular docking using ClusPro. These studies indicated mimetic-9 as a significant molecule since it was found to have better binding score of -938.8 kcal/mol with seven hydrogen bonds and a high number of hydrophobic interactions, than known mimetic TMP with docking score of -798.4 kcal/mol and TMP dimer with docking score of -811.9 kcal/mol for TPOR. Mimetic9-TPOR complex was further assessed by the molecular dynamics simulation, and their complex was found to be stable with an RMSD value of 0.091 Å. While studying the parameters, mimetic-9 was found to have overall good physiochemical properties with positive grand average hydropathy (GRAVY) score and high instability index score and was found to be localized in the extracellular region. The designed mimetic-9 might prove to be a useful lead molecule for mimicking the role of TPO for in vitro platelet production with higher efficiency.

6.
J Stem Cells ; 11(3): 149-169, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28296879

RESUMO

Ex vivo erythropoiesis methods are being developed for more than a decade now, and all the distinct types of stem cells (such as CD34+ HSCs, ESCs, IPSCs, and extensively proliferating erythropoietic progenitor cells) are defined to bear the potential for large scale RBC production shortly. The various regulating factors at different levels of RBCs production are being explored. Since most of the ex-vivo erythropoiesis protocols mimic the dogma followed by hematopoietic stem cells in vivo to give rise to mature RBCs which essentially deals with the intermediate stages of erythropoiesis such as burst forming unit-erythroid (BFU-E) and committed erythroid colony forming unit-erythroid (CFU-E). In vivo generation of erythroid progenitors (BFU-E/CFU-E) is essentially controlled by several factors including glucocorticoids, inflammation, and stress. Furthermore, regular production of functionally mature /transfusable units of RBCs is possible only through the coordinated regulation of terminal proliferation and differentiation of erythroid progenitors by external signals, such as erythropoietin, SCF, IL-3 and interaction to extracellular matrix protein(s) in a 3D culture system. We discuss these complex intracellular networks of coordinated factors and try to understand their molecular mechanism through gene regulation by transcription factors, and miRNAs that might be helpful in developing the optimal RBCs production protocols for commercial production.


Assuntos
Eritrócitos/citologia , Eritropoese , Doadores de Sangue , Transfusão de Sangue , Proliferação de Células , Humanos , Fatores de Risco
7.
J Stem Cells ; 10(1): 43-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26665937

RESUMO

Induced Pluripotent Stem Cells (iPSCs) are self renewable and can differentiate to different types of adult cells, which has shown great promises in the field of regenerative medicine. iPSCs are reprogrammed from human somatic cells through ectopic expression of various transcription factors viz. Oct4, Sox2, Klf4, and c-Myc (OSKM). This novel technology enables derivation of patient specific cells, which possess a potential cure for many diseases. During the last decade, significant progresses have been achieved in enhancing the reprogramming efficiency, safety of iPSCs derivation, development of different delivery techniques by various research groups. Nevertheless, it is important to resolve and define the mechanism underlying the pluripotent stem cells. Major bottleneck which arises during iPSCs generation is the availability of source material (cells/tissues), difficulty to deliver transcription factors with no aberrant genetic modifications and limited reprogramming efficiency. Reprogramming may be achieved by employing different cocktails with number of different transcription factors, application of miRNA and some small molecules such as (Valproic acid, CHiR99021, Sodium butyrate, Vitamin C, Parnate etc). Similarly, various starting source materials have been demonstrated for iPSC based therapies including fibroblasts, cord blood, peripheral blood, keritinocytes, urine, etc., with their specific uses and limitations. Moreover, with the advent of many new reprogramming techniques, various direct delivery methods have been introduced such as using synthetic mRNA expressing pluripotent gene network has been shown to be an appropriate technique to deliver transcription factors and a dozen of small molecules which can replace transcription factors or enhance reprogramming efficiency. This article addresses the iPSCs technology mechanisms, progresses and current perspectives in the field.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Transgenes , Ácido Ascórbico/farmacologia , Ácido Butírico/farmacologia , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Técnicas de Transferência Nuclear , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Medicina Regenerativa/métodos , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Ácido Valproico/farmacologia
8.
Front Cell Dev Biol ; 3: 2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25699255

RESUMO

Recent progresses in the field of Induced Pluripotent Stem Cells (iPSCs) have opened up many gateways for the research in therapeutics. iPSCs are the cells which are reprogrammed from somatic cells using different transcription factors. iPSCs possess unique properties of self renewal and differentiation to many types of cell lineage. Hence could replace the use of embryonic stem cells (ESC), and may overcome the various ethical issues regarding the use of embryos in research and clinics. Overwhelming responses prompted worldwide by a large number of researchers about the use of iPSCs evoked a large number of peple to establish more authentic methods for iPSC generation. This would require understanding the underlying mechanism in a detailed manner. There have been a large number of reports showing potential role of different molecules as putative regulators of iPSC generating methods. The molecular mechanisms that play role in reprogramming to generate iPSCs from different types of somatic cell sources involves a plethora of molecules including miRNAs, DNA modifying agents (viz. DNA methyl transferases), NANOG, etc. While promising a number of important roles in various clinical/research studies, iPSCs could also be of great use in studying molecular mechanism of many diseases. There are various diseases that have been modeled by uing iPSCs for better understanding of their etiology which maybe further utilized for developing putative treatments for these diseases. In addition, iPSCs are used for the production of patient-specific cells which can be transplanted to the site of injury or the site of tissue degeneration due to various disease conditions. The use of iPSCs may eliminate the chances of immune rejection as patient specific cells may be used for transplantation in various engraftment processes. Moreover, iPSC technology has been employed in various diseases for disease modeling and gene therapy. The technique offers benefits over other similar techniques such as animal models. Many toxic compounds (different chemical compounds, pharmaceutical drugs, other hazardous chemicals, or environmental conditions) which are encountered by humans and newly designed drugs may be evaluated for toxicity and effects by using iPSCs. Thus, the applications of iPSCs in regenerative medicine, disease modeling, and drug discovery are enormous and should be explored in a more comprehensive manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA