Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1855, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725967

RESUMO

The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell-cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors.


Assuntos
Proteínas , Software , Transdução de Sinais , Comunicação Celular , Diferenciação Celular
2.
Front Bioeng Biotechnol ; 10: 869111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105598

RESUMO

The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.

3.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796535

RESUMO

The growing tips of plants grow sterile; therefore, disease-free plants can be generated from them. How plants safeguard growing apices from pathogen infection is still a mystery. The shoot apical meristem (SAM) is one of the three stem cells niches that give rise to the above ground plant organs. This is very well explored; however, how signaling networks orchestrate immune responses against pathogen infections in the SAM remains unclear. To reconstruct a transcriptional framework of the differentially expressed genes (DEGs) pertaining to various SAM cellular populations, we acquired large-scale transcriptome datasets from the public repository Gene Expression Omnibus (GEO). We identify here distinct sets of genes for various SAM cellular populations that are enriched in immune functions, such as immune defense, pathogen infection, biotic stress, and response to salicylic acid and jasmonic acid and their biosynthetic pathways in the SAM. We further linked those immune genes to their respective proteins and identify interactions among them by mapping a transcriptome-guided SAM-interactome. Furthermore, we compared stem-cells regulated transcriptome with innate immune responses in plants showing transcriptional separation among their DEGs in Arabidopsis. Besides unleashing a repertoire of immune-related genes in the SAM, our analysis provides a SAM-interactome that will help the community in designing functional experiments to study the specific defense dynamics of the SAM-cellular populations. Moreover, our study promotes the essence of large-scale omics data re-analysis, allowing a fresh look at the SAM-cellular transcriptome repurposing data-sets for new questions.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/imunologia , Imunidade Vegetal/genética , Transcrição Gênica , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flagelina/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Meristema/efeitos dos fármacos , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
4.
Methods Mol Biol ; 2094: 113-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31797296

RESUMO

The advent of multi-OMICS approaches has a significant impact on the investigation of biological processes occurring in plants. RNA-SEQ, cellular proteomics, and metabolomics have added a considerable ease in studying the dynamics of stem cell niches. New cell sorting approaches coupled with the labeling of stem cell population specific marker genes are highly instrumental in enriching distinct cellular populations for various types of analysis. One more promising field of OMICS is the mapping of cellular interactomes. The plant stem cells research is barely profited from this newly emerging field of OMICS. Generation of stem cell/niche-specific interactome is a time-consuming and labor-intensive task. Here, we describe a method on how to assemble a SAM-based interactome after using the available generic Arabidopsis interactomes. To define the context of SAM in a generic interactome, we used SAM cell population transcriptome datasets. Our step-by-step protocol can easily be adopted for other stem cell niches such as RAM and lateral meristems keeping in view the availability of transcriptome datasets for cellular populations of these niches.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Metabolômica/métodos , Brotos de Planta/metabolismo , Células-Tronco/metabolismo , Transcriptoma/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas/genética , Meristema/genética , Células Vegetais/metabolismo , Brotos de Planta/genética , Proteômica/métodos , Transdução de Sinais/genética , Software , Nicho de Células-Tronco/genética
5.
Methods Mol Biol ; 1569: 83-92, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265989

RESUMO

In order to increase our understanding of biological dependencies in plant immune signaling pathways, the known interactions involved in plant immune networks are modeled. This allows computational analysis to predict the functions of growth related hormones in plant-pathogen interaction. The SQUAD (Standardized Qualitative Dynamical Systems) algorithm first determines stable system states in the network and then use them to compute continuous dynamical system states. Our reconstructed Boolean model encompassing hormone immune networks of Arabidopsis thaliana (Arabidopsis) and pathogenicity factors injected by model pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) can be exploited to determine the impact of growth hormones in plant immunity. We describe a detailed working protocol how to use the modified SQUAD-package by exemplifying the contrasting effects of auxin and cytokinins in shaping plant-pathogen interaction.


Assuntos
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Imunidade Vegetal , Plantas/imunologia , Plantas/metabolismo , Biologia Computacional/métodos , Simulação por Computador , Reguladores de Crescimento de Plantas/metabolismo , Plantas/genética , Transdução de Sinais , Software
6.
Int J Med Microbiol ; 307(2): 95-107, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27965080

RESUMO

Dendritic cells (DCs) and macrophages (MΦ) are critical for protection against pathogenic fungi including Aspergillus fumigatus. To analyze the role of platelets in the innate immune response, human DCs and MΦs were challenged with A. fumigatus in presence or absence of human platelet rich plasma (PRP). Gene expression analyses and functional investigations were performed. A systems biological approach was used for initial modelling of the DC - A. fumigatus interaction. DCs in a quiescent state together with different corresponding activation states were validated using gene expression data from DCs and MΦ stimulated with A. fumigatus. To characterize the influence of platelets on the immune response of DCs and MΦ to A. fumigatus, we experimentally quantified their cytokine secretion, phagocytic capacity, maturation, and metabolic activity with or without platelets. PRP in combination with A. fumigatus treatment resulted in the highest expression of the maturation markers CD80, CD83 and CD86 in DCs. Furthermore, PRP enhanced the capacity of macrophages and DCs to phagocytose A. fumigatus conidia. In parallel, PRP in combination with the innate immune cells significantly reduced the metabolic activity of the fungus. Interestingly, A. fumigatus and PRP stimulated MΦ showed a significantly reduced gene expression and secretion of IL6 while PRP only reduced the IL-6 secretion of A. fumigatus stimulated DCs. The in silico systems biological model correlated well with these experimental data. Different modules centrally involved in DC function became clearly apparent, including DC maturation, cytokine response and apoptosis pathways. Taken together, the ability of PRP to suppress IL-6 release of human DCs might prevent local excessive inflammatory hemorrhage, tissue infarction and necrosis in the human lung.


Assuntos
Aspergillus fumigatus/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Plasma Rico em Plaquetas/metabolismo , Antígenos CD/análise , Diferenciação Celular , Citocinas/metabolismo , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Fagocitose
7.
Front Mol Biosci ; 3: 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379244

RESUMO

New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness ("hubs"), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines.

8.
J Exp Bot ; 66(16): 4885-96, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26109575

RESUMO

Plants deploy a finely tuned balance between growth and defence responses for better fitness. Crosstalk between defence signalling hormones such as salicylic acid (SA) and jasmonates (JAs) as well as growth regulators plays a significant role in mediating the trade-off between growth and defence in plants. Here, we specifically discuss how the mutual antagonism between the signalling of auxin and SA impacts on plant growth and defence. Furthermore, the synergism between auxin and JA benefits a class of plant pathogens. JA signalling also poses growth cuts through auxin. We discuss how the effect of cytokinins (CKs) is multifaceted and is effective against a broad range of pathogens in mediating immunity. The synergism between CKs and SA promotes defence against biotrophs. Reciprocally, SA inhibits CK-mediated growth responses. Recent reports show that CKs promote JA responses; however, in a feedback loop, JA suppresses CK responses. We also highlight crosstalk between auxin and CKs and discuss their antagonistic effects on plant immunity. Efforts to minimize the negative effects of auxin on immunity and a reduction in SA- and JA-mediated growth losses should lead to better sustainable plant protection strategies.


Assuntos
Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal , Ciclopentanos/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais
9.
Sci Signal ; 6(279): jc3, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23757021

RESUMO

The small-molecule hormone salicylic acid (SA) is a plant immune signal for which the receptors have only recently been identified. Two recent studies reported that the transcriptional coactivator nonexpresser of pathogenesis-related genes 1 (NPR1) and its paralogues NPR3 and NPR4 are bona fide SA immune signal receptors in plants. Fu et al. demonstrated that because of their binding affinity for SA, NPR3 and NPR4 are SA receptors for immune responses in Arabidopsis thaliana. Both NPR3 and NPR4 function as adaptors in proteasomal degradation of NPR1 in an SA-dependent manner. By applying nonequilibrium methods, they showed very low binding affinity of NPR1 for SA, suggesting that it may not qualify as an SA immune signal transduction receptor. However, using a method of equilibrium dialysis, Wu et al. found that SA binds to NPR1 and induces a conformational change in NPR1 or introduces steric hindrance that relieves repression of the transcriptional activation domain of NPR1 by an autoinhibitory N-terminal domain. This derepression leads to the expression of SA-dependent defense genes. Here, we discuss the importance of emerging SA perception models.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Receptores de Superfície Celular/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais
10.
Plant Signal Behav ; 8(10): doi: 10.4161/psb.26791, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24494231

RESUMO

Cytokinin has long been shown to be an essential modulator of growth and development in plants. However, its implications in plant immunity have only recently been realized. The interaction between jasmonate and salicylate pathways is regarded as a central backbone of plant immune defense. However, the effect of cytokinin on the jasmonate and salicylate mediated balance in plant immunity is still not known. Here, we analyze the impact of cytokinin on the jasmonate-salicylate antagonism in Arabidopsis immunity regarding infection with hemibiotrophic pathogen Pseudomonas syringae pv tomato DC3000 (Pst DC3000). Systems biology analysis of a refined hormone immune pathway model provides insights into the impact of cytokinin on the balance between jasmonate and salicylic acid pathways in Arabidopsis. Targeted experiments validate model simulations monitoring bacterial growth in wild type plants as well as in jasmonate pathway mutants. An integrated analysis shows that CK promotes the SA pathway of plant immunity and does not promote JA-mediated Arabidopsis susceptibility against infection with Pst DC3000. Finally, we discuss these results in the context of an emerging model of auxin-cytokinin antagonism in plant immunity.


Assuntos
Arabidopsis/imunologia , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Citocininas/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Imunidade Vegetal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA