Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
ACS Omega ; 9(2): 2674-2686, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250358

RESUMO

The development of ambient-air-processable organic-inorganic halide perovskite solar cells (OIHPSCs) is a challenge necessary for the transfer of laboratory-scale technology to large-scale and low-cost manufacturing of such devices. Different approaches like additives, antisolvents, composition engineering, and different deposition techniques have been employed to improve the morphology of the perovskite films. Additives that can form Lewis acid-base adducts are known to minimize extrinsic impacts that trigger defects in ambient air. In this work, we used the 3-thiophenemalonic acid (3-TMA) additive, which possesses thiol and carboxyl functional groups, to convert PbI2, PbCl2, and CH3NH3I to CH3NH3PbI3 completely. This strategy is effective in regulating the kinetics of crystallization and improving the crystallinity of the light-absorbing layer under high relative humidity (RH) conditions (30-50%). As a result, the 3-TMA additive increases the yield of the power conversion efficiency (PCE) from 14.9 to 16.5% and its stability under the maximum power point. Finally, we found that the results of this work are highly relevant and provide additional inputs to the ongoing research progress related to additive engineering as one of the efficient strategies to reduce parasitic recombination and enhance the stability of inverted OIHPSCs in ambient environment processing.

2.
Sci Adv ; 9(12): eadf5551, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947626

RESUMO

Combating environmental pollution demands a focus on sustainability, in particular from rapidly advancing technologies that are poised to be ubiquitous in modern societies. Among these, soft robotics promises to replace conventional rigid machines for applications requiring adaptability and dexterity. For key components of soft robots, such as soft actuators, it is thus important to explore sustainable options like bioderived and biodegradable materials. We introduce systematically determined compatible materials systems for the creation of fully biodegradable, high-performance electrohydraulic soft actuators, based on various biodegradable polymer films, ester-based liquid dielectric, and NaCl-infused gelatin hydrogel. We demonstrate that these biodegradable actuators reliably operate up to high electric fields of 200 V/µm, show performance comparable to nonbiodegradable counterparts, and survive more than 100,000 actuation cycles. Furthermore, we build a robotic gripper based on biodegradable soft actuators that is readily compatible with commercial robot arms, encouraging wider use of biodegradable materials systems in soft robotics.

3.
Adv Mater ; 35(5): e2208061, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36305028

RESUMO

Incorporating large organic cations to form 2D and mixed 2D/3D structures significantly increases the stability of perovskite solar cells. However, due to their low electron mobility, aligning the organic sheets to ensure unimpeded charge transport is critical to rival the high performances of pure 3D systems. While additives such as methylammonium chloride (MACl) can enable this preferential orientation, so far, no complete description exists explaining how they influence the nucleation process to grow highly aligned crystals. Here, by investigating the initial stages of the crystallization, as well as partially and fully formed perovskites grown using MACl, the origins underlying this favorable alignment are inferred. This mechanism is studied by employing 3-fluorobenzylammonium in quasi-2D perovskite solar cells. Upon assisting the crystallization with MACl, films with a degree of preferential orientation of 94%, capable of withstanding moisture levels of 97% relative humidity for 10 h without significant changes in the crystal structure are achieved. Finally, by combining macroscopic, microscopic, and spectroscopic studies, the nucleation process leading to highly oriented perovskite films is elucidated. Understanding this mechanism will aid in the rational design of future additives to achieve more defect tolerant and stable perovskite optoelectronics.

4.
IEEE Trans Biomed Eng ; 70(2): 735-746, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36006884

RESUMO

Surgical simulators are safe and evolving educational tools for developing surgical skills. In particular, virtual and hybrid simulators are preferred due to their detailedness, customization and evaluation capabilities. To accelerate the revolution of a novel class of hybrid simulators, a Smart Artificial Soft Tissue is presented here, that determines the relative position of conductive surgical instruments in artificial soft tissue by inverse resistance mappings without the need for a fixed reference point. This is particularly beneficial for highly deformable structures when specific target regions need to be reached or avoided. The carbon-black-silicone composite used can be shaped almost arbitrarily and its elasticity can be tuned by modifying the silicone base material. Thus, objective positional feedback for haptically correct artificial soft tissue can be ensured. This is demonstrated by the development of a laryngeal phantom to simulate the implantation of laryngeal pacemaker electrodes. Apart from the position-detecting larynx phantom, the simulator uses a tablet computer for the virtual representation of the vocal folds' movements, in accordance with the electrical stimulation by the inserted electrodes. The possibility of displaying additional information about target regions and anatomy is intended to optimize the learning progress and illustrates the extensibility of hybrid surgical simulators.


Assuntos
Laringe , Marca-Passo Artificial , Prega Vocal , Aprendizagem , Retroalimentação , Simulação por Computador
5.
Nat Electron ; 6(8): 630-641, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38465017

RESUMO

Wearable sweat sensors can potentially be used to continuously and non-invasively monitor physicochemical biomarkers that contain information related to disease diagnostics and fitness tracking. However, the development of such autonomous sensors faces a number of challenges including achieving steady sweat extraction for continuous and prolonged monitoring, and addressing the high power demands of multifunctional and complex analysis. Here we report an autonomous wearable biosensor that is powered by a perovskite solar cell and can provide continuous and non-invasive metabolic monitoring. The device uses a flexible quasi-two-dimensional perovskite solar cell module that provides ample power under outdoor and indoor illumination conditions (power conversion efficiency exceeding 31% under indoor light illumination). We show that the wearable device can continuously collect multimodal physicochemical data - glucose, pH, sodium ions, sweat rate, and skin temperature - across indoor and outdoor physical activities for over 12 hours.

6.
Sci Adv ; 8(45): eadd7118, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367944

RESUMO

Electronic devices are irrevocably integrated into our lives. Yet, their limited lifetime and often improvident disposal demands sustainable concepts to realize a green electronic future. Research must shift its focus on substituting nondegradable and difficult-to-recycle materials to allow either biodegradation or facile recycling of electronic devices. Here, we demonstrate a concept for growth and processing of fungal mycelium skins as biodegradable substrate material for sustainable electronics. The skins allow common electronic processing techniques including physical vapor deposition and laser patterning for electronic traces with conductivities as high as 9.75 ± 1.44 × 104 S cm-1. The conformal and flexible electronic mycelium skins withstand more than 2000 bending cycles and can be folded several times with only moderate resistance increase. We demonstrate mycelium batteries with capacities as high as ~3.8 mAh cm-2 used to power autonomous sensing devices including a Bluetooth module and humidity and proximity sensor.

7.
Nat Commun ; 13(1): 4456, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945209

RESUMO

High-speed locomotion is an essential survival strategy for animals, allowing populating harsh and unpredictable environments. Bio-inspired soft robots equally benefit from versatile and ultrafast motion but require appropriate driving mechanisms and device designs. Here, we present a class of small-scale soft electromagnetic robots made of curved elastomeric bilayers, driven by Lorentz forces acting on embedded printed liquid metal channels carrying alternating currents with driving voltages of several volts in a static magnetic field. Their dynamic resonant performance is investigated experimentally and theoretically. These robust and versatile robots can walk, run, swim, jump, steer and transport cargo. Their tethered versions reach ultra-high running speeds of 70 BL/s (body lengths per second) on 3D-corrugated substrates and 35 BL/s on arbitrary planar substrates while their maximum swimming speed is 4.8 BL/s in water. Moreover, prototype untethered versions run and swim at a maximum speed of 2.1 BL/s and 1.8 BL/s, respectively.


Assuntos
Robótica , Animais , Elasticidade , Fenômenos Eletromagnéticos , Locomoção , Natação
8.
Adv Mater ; 34(32): e2204457, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714220

RESUMO

Realizing a sustainable, technologically advanced future will necessitate solving the electronic waste problem. Biodegradable forms of electronics offer a viable path through their environmental benignity. With both the sheer number of devices produced every day as well as their areas of application ever increasing, new concepts of degradable batteries able to sustain the high power demands of modern electronics must be developed. Simultaneously, integration of electronics in close interaction with its user or powering soft robotic devices necessitates high degrees of compliance, rendering stretchable batteries indispensable. Here, a concept for merging intrinsically stretchable materials with engineered stretchability by kirigami-patterning on a component level is shown to yield high-power biodegradable batteries with reversible elasticity up to 35% when stretched uniaxially and 20% for biaxial extension. Using a combination of molybdenum metal foils, a molybdenum trioxide paste, and magnesium metal foils as electrode materials, a peak power output of 196 µW cm-2 and an energy density of 1.72 mWh cm-2 is achieved. The biodegradable batteries are used to power an on-skin biomedical sensor patch, enabling monitoring of sodium concentration in sweat. This concept provides a versatile route for high-power biodegradable batteries, enabling untethered soft electronic devices in a sustainable future.

9.
Nanoscale ; 14(7): 2605-2616, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35129185

RESUMO

The operational stability of organic-inorganic halide perovskite based solar cells is a challenge for widespread commercial adoption. The mobility of ionic species is a key contributor to perovskite instability since ion migration can lead to unfavourable changes in the crystal lattice and ultimately destabilisation of the perovskite phase. Here we study the nanoscale early-stage degradation of mixed-halide mixed-cation perovskite films under operation-like conditions using electrical scanning probe microscopy to investigate the formation of surface nanograin defects. We identify the nanograins as lead iodide and study their formation in ambient and inert environments with various optical, thermal, and electrical stress conditions in order to elucidate the different underlying degradation mechanisms. We find that the intrinsic instability is related to the polycrystalline morphology, where electrical bias stress leads to the build-up of charge at grain boundaries and lateral space charge gradients that destabilise the local perovskite lattice facilitating escape of the organic cation. This mechanism is accelerated by enhanced ionic mobility under optical excitation. Our findings highlight the importance of inhibiting the formation of local charge imbalance, either through compositions preventing ionic redistribution or local grain boundary passivation, in order to extend operational stability in perovskite photovoltaics.

10.
Soft Robot ; 9(1): 128-134, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33502957

RESUMO

Nature offers bionic inspirations for elegant applications of mechanical principles such as the concept of snap buckling, which occurs in several plants. Exploiting mechanical instabilities is the key to fast movement here. We use the snap-through and snap-back instability observed in natural rubber balloons to design an ultrafast purely mechanical elastomer actuator. Our design eliminates the need in potentially harmful stimulants, high voltages, and is safe in operation. We trigger the instability and thus the actuation by temperature changes, which bring about a liquid/gas phase transition in a suitable volatile fluid. This allows for large deformations up to 300% area expansion within response times of a few milliseconds. A few degree temperature change, readily provided by the warmth of a human hand, is sufficient to reliably trigger the actuation. Experiments are compared with the appropriate theory for a model actuator system; this provides design rules, sensitivity, and operational limitations, paving the way for applications ranging from object sorting to intimate human-machine interaction.


Assuntos
Robótica , Temperatura Corporal , Elastômeros , Humanos , Movimento , Transição de Fase
11.
Adv Mater ; 33(37): e2102736, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339065

RESUMO

Embedded sensors are key to optimizing processes and products; they collect data that allow time, energy, and materials to be saved, thereby reducing costs. After production, they remain in place and are used to monitor the long-term structural health of buildings or aircraft. Fueled by climate change, sustainable construction materials such as wood and fiber composites are gaining importance. Current sensors are not optimized for use with these materials and often act as defects that cause catastrophic failures. Here, flexible, highly permeable, and imperceptible sensors (iSens) are introduced that integrate seamlessly into a component. Their porous substrates are readily infused with adhesives and withstand harsh conditions. In situ resistive temperature measurements and capacitive sensing allows monitoring of adhesives curing as used in wooden structures and fiber composites. The devices also act as heating elements to reduce the hardening time of the glue. Results are analyzed using numerical simulations and theoretical analysis. The suggested iSens technology is widely applicable and represents a step towards realizing the Internet of Things for construction materials.

12.
Adv Mater ; 33(19): e2007638, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33974315
13.
Adv Sci (Weinh) ; 8(3): 2003104, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552870

RESUMO

Compact and entirely soft optics with tunable and adaptive properties drive the development of life-like soft robotic systems. Yet, existing approaches are either slow, require rigid components, or use high operating voltages of several kilovolts. Here, soft focus-tunable lenses are introduced, which operate at practical voltages, cover a high range of adjustable focal lengths, and feature response times in the milliseconds range. The nature-inspired design comprises a liquid-filled elastomeric lens membrane, which is inflated by zipping electroactive polymers to tune the focal length. An analytic description of the tunable lens supports optimized designs and accurate prediction of the lens characteristics. Focal length changes between 22 and 550 mm (numerical aperture 0.14-0.005) within 260 ms, equal in performance to human eyes, are demonstrated for a lens with 3 mm aperture radius, while applying voltages below 500 V. The presented model, design rules, and fabrication methods address central challenges of soft electrostatic actuators and optical systems, and pave the way toward autonomous bio-inspired robots and machines.

14.
Adv Mater ; 33(19): e2004413, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33336520

RESUMO

The advancement of technology has a profound and far-reaching impact on the society, now penetrating all areas of life. From cradle to grave, one is supported by and depends on a wide range of electronic and robotic appliances, with an ever more intimate integration of the digital and biological spheres. These advances, however, often come at the price of negatively impacting our ecosystem, with growing demands on energy, contributions to greenhouse gas emissions and environmental pollution-from production to improper disposal. Mitigating these adverse effects is among the grand challenges of the society and at the forefront of materials research. The currently emerging forms of soft, biologically inspired electronics and robotics have the unique potential of becoming not only like their natural antitypes in performance and capabilities, but also in terms of their ecological footprint. This review outlines the rise of sustainable materials in soft and bioinspired robotics, targeting all robotic components from actuators to energy storage and electronics. The state-of-the-art in biobased robotics spans flourishing fields and applications ranging from microbots operating in vivo to biohybrid machines and fully biodegradable yet resilient actuators. These first steps initiate the evolution of robotics and guide them into a sustainable future.

15.
Mod Pathol ; 34(5): 895-903, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33184470

RESUMO

Recent advances in artificial intelligence, particularly in the field of deep learning, have enabled researchers to create compelling algorithms for medical image analysis. Histological slides of basal cell carcinomas (BCCs), the most frequent skin tumor, are accessed by pathologists on a daily basis and are therefore well suited for automated prescreening by neural networks for the identification of cancerous regions and swift tumor classification.In this proof-of-concept study, we implemented an accurate and intuitively interpretable artificial neural network (ANN) for the detection of BCCs in histological whole-slide images (WSIs). Furthermore, we identified and compared differences in the diagnostic histological features and recognition patterns relevant for machine learning algorithms vs. expert pathologists.An attention-ANN was trained with WSIs of BCCs to identify tumor regions (n = 820). The diagnosis-relevant regions used by the ANN were compared to regions of interest for pathologists, detected by eye-tracking techniques.This ANN accurately identified BCC tumor regions on images of histologic slides (area under the ROC curve: 0.993, 95% CI: 0.990-0.995; sensitivity: 0.965, 95% CI: 0.951-0.979; specificity: 0.910, 95% CI: 0.859-0.960). The ANN implicitly calculated a weight matrix, indicating the regions of a histological image that are important for the prediction of the network. Interestingly, compared to pathologists' eye-tracking results, machine learning algorithms rely on significantly different recognition patterns for tumor identification (p < 10-4).To conclude, we found on the example of BCC WSIs, that histopathological images can be efficiently and interpretably analyzed by state-of-the-art machine learning techniques. Neural networks and machine learning algorithms can potentially enhance diagnostic precision in digital pathology and uncover hitherto unused classification patterns.


Assuntos
Carcinoma Basocelular/patologia , Aprendizado de Máquina , Redes Neurais de Computação , Patologistas , Neoplasias Cutâneas/patologia , Pele/patologia , Algoritmos , Humanos
16.
Adv Sci (Weinh) ; 7(24): 2002586, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344134

RESUMO

X-ray detectors play a pivotal role in development and advancement of humankind, from far-reaching impact in medicine to furthering the ability to observe distant objects in outer space. While other electronics show the ability to adapt to flexible and lightweight formats, state-of-the-art X-ray detectors rely on materials requiring bulky and fragile configurations, severely limiting their applications. Lead halide perovskites is one of the most rapidly advancing novel materials with success in the field of semiconductor devices. Here, an ultraflexible, lightweight, and highly conformable passively operated thin film perovskite X-ray detector with a sensitivity as high as 9.3 ± 0.5 µC Gy-1 cm-2 at 0 V and a remarkably low limit of detection of 0.58 ± 0.05 µGy s-1 is presented. Various electron and hole transporting layers accessing their individual impact on the detector performance are evaluated. Moreover, it is shown that this ultrathin form-factor allows for fabrication of devices detecting X-rays equivalently from front and back side.

17.
Sci Adv ; 6(26): eabc0251, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32637626

RESUMO

Rigid electromagnetic actuators serve our society in a myriad of ways for more than 200 years. However, their bulky nature restricts close collaboration with humans. Here, we introduce soft electromagnetic actuators (SEMAs) by replacing solid metal coils with liquid-metal channels embedded in elastomeric shells. We demonstrate human-friendly, simple, stretchable, fast, durable, and programmable centimeter-scale SEMAs that drive a soft shark, interact with everyday objects, or rapidly mix a dye with water. A multicoil flower SEMA with individually controlled petals blooms or closes within tens of milliseconds, and a cubic SEMA performs programmed, arbitrary motion sequences. We develop a numerical model supporting design and opening potential routes toward miniaturization, reduction of power consumption, and increase in mechanical efficiency. SEMAs are electrically controlled shape-morphing systems that are potentially empowering future applications from soft grippers to minimally invasive medicine.

18.
Nat Mater ; 19(10): 1102-1109, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32541932

RESUMO

Biodegradable and biocompatible elastic materials for soft robotics, tissue engineering or stretchable electronics with good mechanical properties, tunability, modifiability or healing properties drive technological advance, and yet they are not durable under ambient conditions and do not combine all the attributes in a single platform. We have developed a versatile gelatin-based biogel, which is highly resilient with outstanding elastic characteristics, yet degrades fully when disposed. It self-adheres, is rapidly healable and derived entirely from natural and food-safe constituents. We merge all the favourable attributes in one material that is easy to reproduce and scalable, and has a low-cost production under ambient conditions. This biogel is a step towards durable, life-like soft robotic and electronic systems that are sustainable and closely mimic their natural antetypes.

19.
Adv Sci (Weinh) ; 7(5): 1903391, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32154089

RESUMO

Rapid energy-efficient movements are one of nature's greatest developments. Mechanisms like snap-buckling allow plants like the Venus flytrap to close the terminal lobes of their leaves at barely perceptible speed. Here, a soft balloon actuator is presented, which is inspired by such mechanical instabilities and creates safe, giant, and fast deformations. The basic design comprises two inflated elastomer membranes pneumatically coupled by a pressurized chamber of suitable volume. The high-speed actuation of a rubber balloon in a state close to the verge of mechanical instability is remotely triggered by a voltage-controlled dielectric elastomer membrane. This method spatially separates electrically active and passive parts, and thereby averts electrical breakdown resulting from the drastic thinning of an electroactive membrane during large expansion. Bistable operation with small and large volumes of the rubber balloon is demonstrated, achieving large volume changes of 1398% and a high-speed area change rate of 2600 cm2 s-1. The presented combination of fast response time with large deformation and safe handling are central aspects for a new generation of soft bio-inspired robots and can help pave the way for applications ranging from haptic displays to soft grippers and high-speed sorting machines.

20.
Nat Commun ; 10(1): 4405, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562319

RESUMO

The emergence of smart electronics, human friendly robotics and supplemented or virtual reality demands electronic skins with both tactile and touchless perceptions for the manipulation of real and virtual objects. Here, we realize bifunctional electronic skins equipped with a compliant magnetic microelectromechanical system able to transduce both tactile-via mechanical pressure-and touchless-via magnetic fields-stimulations simultaneously. The magnetic microelectromechanical system separates electric signals from tactile and touchless interactions into two different regions, allowing the electronic skins to unambiguously distinguish the two modes in real time. Besides, its inherent magnetic specificity overcomes the interference from non-relevant objects and enables signal-programmable interactions. Ultimately, the magnetic microelectromechanical system enables complex interplay with physical objects enhanced with virtual content data in augmented reality, robotics, and medical applications.


Assuntos
Fenômenos Fisiológicos da Pele , Percepção do Tato/fisiologia , Tato , Dispositivos Eletrônicos Vestíveis , Algoritmos , Eletricidade , Fenômenos Eletromagnéticos , Eletrônica/instrumentação , Eletrônica/métodos , Humanos , Magnetismo , Robótica , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA