RESUMO
Neutralizing antibody function provides a foundation for the efficacy of vaccines and therapies1-3. Here, using a robust in vitro Ebola virus (EBOV) pseudo-particle infection assay and a well-defined set of solid-phase assays, we describe a wide spectrum of antibody responses in a cohort of healthy survivors of the Sierra Leone EBOV outbreak of 2013-2016. Pseudo-particle virus-neutralizing antibodies correlated with total anti-EBOV reactivity and neutralizing antibodies against live EBOV. Variant EBOV glycoproteins (1995 and 2014 strains) were similarly neutralized. During longitudinal follow-up, antibody responses fluctuated in a 'decay-stimulation-decay' pattern that suggests de novo restimulation by EBOV antigens after recovery. A pharmacodynamic model of antibody reactivity identified a decay half-life of 77-100 days and a doubling time of 46-86 days in a high proportion of survivors. The highest antibody reactivity was observed around 200 days after an individual had recovered. The model suggests that EBOV antibody reactivity declines over 0.5-2 years after recovery. In a high proportion of healthy survivors, antibody responses undergo rapid restimulation. Vigilant follow-up of survivors and possible elective de novo antigenic stimulation by vaccine immunization should be considered in order to prevent EBOV viral recrudescence in recovering individuals and thereby to mitigate the potential risk of reseeding an outbreak.
Assuntos
Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Convalescença , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Sobreviventes , Adolescente , Adulto , África Ocidental/epidemiologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Estudos de Coortes , Feminino , Meia-Vida , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Fatores de Tempo , Viremia/sangue , Viremia/imunologia , Adulto JovemRESUMO
BACKGROUND: Passive therapy with convalescent plasma provides an early opportunity to intervene in Ebola virus disease (EVD). Methods for field screening and selection of potential donors and quantifying plasma antibody are needed. STUDY DESIGN AND METHODS: Recombinant Ebola virus glycoprotein (EBOV GP) was formatted into immunoglobulin G-capture, competitive, and double-antigen bridging enzyme immunoassays (EIAs). EVD survivors in Freetown, Sierra Leone, were recruited as potential plasma donors and assessed locally using sera alone and/or paired sera and oral fluids (ORFs). Uninfected controls comprised unexposed Gambians and communities in Western Area, Sierra Leone. Antibody neutralization in selected sera was measured retrospectively in a pseudotype virus assay. RESULTS: A total of 115 potential donors were considered for enrollment: 110 plasma samples were concordantly reactive in the three EIAs; three were concordantly unreactive and two were reactive in two of three EIAs (98.2% agreement; 95% confidence interval [CI], 93.9%-99.8%). In 88 donors with paired ORF and plasma, G-capture EIA reactivity correlated well in the two analytes (R2 = 0.795). Plasma and ORF from 44 Gambians were unreactive. ORF samples from 338 of 339 unexposed Western Area community controls were unreactive (specificity, 99.7%; 95% CI, 98.4%-99.7%); ORF samples from 113 of 116 Kerry Town EVD survivors were reactive (sensitivity, 97.4%; 95% CI, 92.5%-99.5%). Strong reactivity in G-capture and/or competitive EIAs identified donors with high plasma EBOV GP antibody levels in the double-antigen bridging assay, correlating with high levels of neutralizing antibody. CONCLUSIONS: In-field testing can qualify convalescent donors for providing high-titer antibody.