Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
ACS Appl Mater Interfaces ; 15(48): 55659-55668, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38010144

RESUMO

The liquid-phase reduction method for the preparation of metal nanoparticles (NPs) by the reduction of metal salts or metal complexes in a solvent with a reducing agent is widely used to prepare Ni NPs that exhibit high catalytic activity in various organic transformations. Intensive research has been conducted on control of the morphology and size of Ni NPs by the addition of polymers and long-chain compounds as protective agents; however, these agents typically cause a decrease in catalytic activity. Here, we report on the preparation of Ni NPs using hydrosilane (Ni-Si) as a reducing agent and a size-controlling agent. The substituents on silicon can control not only the size but also the crystal phase of the Ni NPs. The prepared Ni NPs exhibited high catalytic performance for the hydrogenation of unsaturated compounds, aromatics, and heteroaromatics to give the corresponding hydrogenated products in high yields. The unique feature of Ni catalysts prepared by the hydrosilane-assisted method is that the catalysts can be handled under air as opposed to conventional Ni catalysts such as Raney Ni. Characterization studies indicated that the surface hydroxide was reduced under the catalytic reaction conditions with H2 at around 100 °C and with the assistance of organosilicon compounds deposited on the catalyst surface. The hydrosilane-assisted method presented here could be applied to the preparation of supported Ni catalysts (Ni-Si/support). The interaction between the Ni NPs and a metal oxide support enabled the direct amination of alcohols with ammonia to afford the primary amine selectively.

2.
Chem Sci ; 14(20): 5453-5459, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37234904

RESUMO

Cation-uptake has been long researched as an important topic in materials science. Herein we focus on a molecular crystal composed of a charge-neutral polyoxometalate (POM) capsule [MoVI72FeIII30O252(H2O)102(CH3CO2)15]3+ encapsulating a Keggin-type phosphododecamolybdate anion [α-PMoVI12O40]3-. Cation-coupled electron-transfer reaction occurs by treating the molecular crystal in an aqueous solution containing CsCl and ascorbic acid as a reducing reagent. Specifically, multiple Cs+ ions and electrons are captured in crown-ether-like pores {MoVI3FeIII3O6}, which exist on the surface of the POM capsule, and Mo atoms, respectively. The locations of Cs+ ions and electrons are revealed by single-crystal X-ray diffraction and density functional theory studies. Highly selective Cs+ ion uptake is observed from an aqueous solution containing various alkali metal ions. Cs+ ions can be released from the crown-ether-like pores by the addition of aqueous chlorine as an oxidizing reagent. These results show that the POM capsule functions as an unprecedented "redox-active inorganic crown ether", clearly distinguished from the non-redox-active organic counterpart.

3.
ACS Appl Mater Interfaces ; 15(14): 17957-17968, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010448

RESUMO

The development of effective solid acid-base bifunctional catalysts remains a challenge because of the difficulty associated with designing and controlling their active sites. In the present study, highly pure perovskite oxide nanoparticles with d0-transition-metal cations such as Ti4+, Zr4+, and Nb5+ as B-site elements were successfully synthesized by a sol-gel method using dicarboxylic acids. Moreover, the specific surface area of SrTiO3 was increased to 46 m2 g-1 by a simple procedure of changing the atmosphere from N2 to air during calcination of an amorphous precursor. The resultant SrTiO3 nanoparticles showed the highest catalytic activity for the cyanosilylation of acetophenone with trimethylsilyl cyanide (TMSCN) among the tested catalysts not subjected to a thermal pretreatment. Various aromatic and aliphatic carbonyl compounds were efficiently converted to the corresponding cyanohydrin silyl ethers in good-to-excellent yields. The present system was applicable to a larger-scale reaction of acetophenone with TMSCN (10 mmol scale), in which 2.06 g of the analytically pure corresponding product was isolated. In this case, the reaction rate was 8.4 mmol g-1 min-1, which is the highest rate among those reported for heterogeneous catalyst systems that do not involve a pretreatment. Mechanistic studies, including studies of the catalyst effect, Fourier transform infrared spectroscopy, and temperature-programmed desorption measurements using probe molecules such as pyridine, acetophenone, CO2, and CHCl3, and the poisoning effect of pyridine and acetic acid toward the cyanosilylation, revealed that moderate-strength acid and base sites present in moderate amounts on SrTiO3 most likely enable SrTiO3 to act as a bifunctional acid-base solid catalyst through cooperative activation of carbonyl compounds and TMSCN. This bifunctional catalysis through SrTiO3 resulted in high catalytic performance even without a heat pretreatment, in sharp contrast to the performance of basic MgO and acidic TiO2 catalysts.

4.
J Am Chem Soc ; 144(31): 14090-14100, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35860845

RESUMO

The pursuit of a high surface area while maintaining high catalytic performance remains a challenge due to a trade-off relationship between these two features in some cases. In this study, mesoporous todorokite-type manganese oxide (OMS-1) nanoparticles with high specific surface areas were synthesized in one step by a new synthesis approach involving crystallization (i.e., solid-state transformation) of a precursor produced by a redox reaction between MnO4- and Mn2+ reagents. The use of a low-crystallinity precursor with small particles is essential to achieve this solid-state transformation into OMS-1 nanoparticles. The specific surface area reached up to ca. 250 m2 g-1, which is much larger than those (13-185 m2 g-1) for Mg-OMS-1 synthesized by previously reported methods including multistep synthesis or dissolution/precipitation processes. Despite ultrasmall nanoparticles, a linear correlation between the catalytic reaction rates of OMS-1 and the surface areas was observed without a trade-off relationship between particle size and catalytic performance. These OMS-1 nanoparticles exhibited the highest catalytic activity among the Mn-based catalysts tested for the oxidation of benzyl alcohol and thioanisole with molecular oxygen (O2) as the sole oxidant, including highly active ß-MnO2 nanoparticles. The present OMS-1 nanomaterial could also act as a recyclable heterogeneous catalyst for the aerobic oxidation of various aromatic alcohols and sulfides under mild reaction conditions. The mechanistic studies showed that alcohol oxidation proceeds with oxygen species caused by the solid, and the high surface area of OMS-1 significantly contributes to an enhancement of the catalytic activity for aerobic oxidation.


Assuntos
Compostos de Manganês , Nanopartículas , Catálise , Cristalização , Compostos de Manganês/química , Oxirredução , Óxidos/química , Oxigênio
5.
ACS Appl Mater Interfaces ; 14(5): 6528-6537, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080862

RESUMO

Heterogeneously catalyzed aerobic oxidative C-H functionalization under mild conditions is a chemical process to obtain desired oxygenated products directly. Nanosized murdochite-type oxide Mg6MnO8 (Mg6MnO8-MA) was successfully synthesized by the sol-gel method using malic acid. The specific surface area reached up to 104 m2 g-1, which is about 7 times higher than those (2-15 m2 g-1) of Mg6MnO8 synthesized by previously reported methods. Mg6MnO8-MA exhibited superior catalytic performance to those of other Mn- and Mg-based oxides, including manganese oxides with Mn-O-Mn active sites for the oxidation of fluorene with molecular oxygen (O2) as the sole oxidant under mild conditions (40 °C). The present catalytic system was applicable to the aerobic oxidation of various substrates. The catalyst could be recovered by simple filtration and reused several times without obvious loss of its high catalytic performance. The correlation between the reactivity and the pKa of the substrates, basic properties of catalysts, and kinetic isotope effects suggest a basicity-controlled mechanism of hydrogen atom transfer. The 18O-labeling experiments, kinetics, and mechanistic studies showed that H abstraction of the hydrocarbon proceeds via a mechanism involving O2 activation. The structure of Mg6MnO8 consisting of isolated Mn4+ species located in a basic MgO matrix plays an important role in the present oxidation.

6.
ACS Appl Mater Interfaces ; 12(47): 52668-52677, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33185087

RESUMO

Active metal catalysts are the key in chemical industry for sustainable production of multitude of chemical resources. Here, we report a new ruthenium (Ru) composite with a synergistically controlled nanostructure and electronic properties as a highly efficient hydrogenation catalyst which comprises stable small Ru nanoparticles (mean particle size, ca. 0.9 nm) in situ generated into a nanoporous N-functionalized carbon with high surface area (ca. 650 m2 g-1) and has strong electron-donating power of Ru sites of nanoparticles. The scalable and highly reusable catalyst, prepared from a self-assembled Ru complex, performs actively with low per metal usage under mild conditions (60-80 °C and 0.5-1.0 MPa H2) for selective hydrogenation of various quinolines and pyridines. The role of electron-donating properties of the new Ru nanohybrid for highly efficient catalysis was characterized by both experiments and computational studies. Density functional theory calculations reveal that weak adsorption energies of quinoline at the electron-rich Ru surface prevents poisoning caused by its strong coordination and provides excellent reusability of the catalyst, while low activation barriers for the hydrogenation steps of the N-heterocyclic ring correlate with high catalytic activity. Our catalyst exhibits 5-24-fold higher turnover frequency up to ca. 167 h-1 among the efficient noble metal catalysts reported for selective hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline.

7.
ACS Appl Mater Interfaces ; 12(32): 36004-36013, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32805787

RESUMO

Mesoporous ß-MnO2 nanoparticles were synthesized by a template-free low-temperature crystallization of Mn4+ precursors (low-crystallinity layer-type Mn4+ oxide, c-distorted H+-birnessite) produced by the reaction of MnO4- and Mn2+. The Mn starting materials, pH of the reaction solution, and calcination temperatures significantly affect the crystal structure, surface area, porous structure, and morphology of the manganese oxides formed. The pH conditions during the precipitation of Mn4+ precursors are important for controlling the morphology and porous structure of ß-MnO2. Nonrigid aggregates of platelike particles with slitlike pores (ß-MnO2-1 and -2) were obtained from the combinations of NaMnO4/MnSO4 and NaMnO4/Mn(NO3)2, respectively. On the other hand, spherelike particles with ink-bottle shaped pores (ß-MnO2-3) were formed in NaMnO4/Mn(OAc)2 with pH adjustment (pH 0.8). The specific surface areas for ß-MnO2-1, -2, and -3 were much higher than those for nonporous ß-MnO2 nanorods synthesized using a typical hydrothermal method (ß-MnO2-HT). On the other hand, c-distorted H+-birnessite precursors with a high interlayer metal cation (Na+ and K+) content led to the formation of α-MnO2 with a 2 × 2 tunnel structure. These mesoporous ß-MnO2 materials acted as effective heterogeneous catalysts for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) as a bioplastic monomer and for the transformation of aromatic alcohols to the corresponding aldehydes, where the catalytic activities of ß-MnO2-1, -2, and -3 were approximately 1 order of magnitude higher than that of ß-MnO2-HT. ß-MnO2-3 exhibited higher catalytic activity (especially for larger molecules) than the other ß-MnO2 materials, and this is likely attributed to the nanometer-sized spaces.

8.
Chem Commun (Camb) ; 56(14): 2095-2098, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31995042

RESUMO

High-surface-area ß-MnO2 (ß-MnO2-HS) nanoparticles could act as effective heterogeneous catalysts for the one-pot oxidative sulfonamidation of various aromatic and heteroaromatic thiols to the corresponding sulfonamides using molecular oxygen (O2) and ammonia (NH3) as respective oxygen and nitrogen sources, without the need for any additives.

9.
Chem Sci ; 11(36): 9884-9890, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34094248

RESUMO

Heterogeneously catalysed synthesis of primary amines by direct amination of alcohols with ammonia has long been an elusive goal. In contrast to reported Ru-based catalytic systems, we report that Ru-MgO/TiO2 acts as an effective heterogeneous catalyst for the direct amination of a variety of alcohols to primary amines at low temperatures of ca. 100 °C without the introduction of H2 gas. The present system could be applied to a variety of alcohols and provides an efficient synthetic route for 2,5-bis(aminomethyl)furan (BAMF), an attention-getting biomonomer. The high catalytic performance can be rationalized by the reactivity tuning of Ru-H species using MgO. Spectroscopic measurements suggest that MgO enhances the reactivity of hydride species by electron donation from MgO to Ru.

10.
RSC Adv ; 10(54): 32296-32300, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35516507

RESUMO

Easily prepared Ni/NiO acts as a heterogeneous catalyst for the one-pot reductive amination of carbonyl compounds with nitroarenes to afford secondary amines with H2 as a hydride source. This catalytic system does not require a special technique to avoid air-exposure, in contrast to the common heterogeneous Ni catalysts.

12.
Chem Commun (Camb) ; 55(28): 4019-4022, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30806415

RESUMO

CePO4 nanorods with uniform surface Ce sites could work as a durable catalyst and showed the highest C2 yield of 18% in an electric field without the need for external heating, which was comparable to that reported for high-performance catalysts at high temperature (>900 K).

13.
J Am Chem Soc ; 141(2): 890-900, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30612429

RESUMO

Aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) as a bioplastics monomer is efficiently promoted by a simple system based on a nonprecious-metal catalyst of MnO2 and NaHCO3. Kinetic studies indicate that the oxidation of 5-formyl-2-furancarboxylic acid (FFCA) to FDCA is the slowest step for the aerobic oxidation of HMF to FDCA over activated MnO2. We demonstrate through combined computational and experimental studies that HMF oxidation to FDCA is largely dependent on the MnO2 crystal structure. Density functional theory (DFT) calculations reveal that vacancy formation energies at the planar oxygen sites in α- and γ-MnO2 are higher than those at the bent oxygen sites. ß- and λ-MnO2 consist of only planar and bent oxygen sites, respectively, with lower vacancy formation energies. Consequently, ß- and λ-MnO2 are likely to be good candidates as oxidation catalysts. On the other hand, experimental studies reveal that the reaction rates per surface area for the slowest step (FFCA oxidation to FDCA) decrease in the order of ß-MnO2 > λ-MnO2 > γ-MnO2 ≈ α-MnO2 > δ-MnO2 > ε-MnO2; the catalytic activity of ß-MnO2 exceeds that of the previously reported activated MnO2 by three times. The order is in good agreement not only with the DFT calculation results, but also with the reduction rates per surface area determined by the H2-temperature-programmed reduction measurements for MnO2 catalysts. The successful synthesis of high-surface-area ß-MnO2 significantly improves the catalytic activity for the aerobic oxidation of HMF to FDCA.


Assuntos
Ácidos Dicarboxílicos/síntese química , Furaldeído/análogos & derivados , Furanos/síntese química , Compostos de Manganês/química , Óxidos/química , Catálise , Teoria da Densidade Funcional , Furaldeído/química , Modelos Químicos , Oxirredução , Oxigênio/química , Bicarbonato de Sódio/química
14.
Chem Sci ; 9(27): 5949-5956, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30079209

RESUMO

The creation of metal catalysts with highly active surfaces is pivotal to meeting the strong economic demand of the chemical industry. Specific flat-shaped pristine fcc ruthenium nanoparticles having a large fraction of atomically active {111} facets exposed on their flat surfaces have been developed that act as a highly selective and reusable heterogeneous catalyst for the production of various primary amines at exceedingly high reaction rates by the low temperature reductive amination of carbonyl compounds. The high performance of the catalyst is attributed to the large fraction of metallic Ru serving as active sites with weak electron donating ability that prevail on the surface exposed {111} facets of flat-shaped fcc Ru nanoparticles. This catalyst exhibits a highest turnover frequency (TOF) of ca. 1850 h-1 for a model reductive amination of biomass derived furfural to furfurylamine and provides a reaction rate approximately six times higher than that of an efficient and selective support catalyst of Ru-deposited Nb2O5 (TOF: ca. 310 h-1).

15.
ACS Appl Mater Interfaces ; 10(28): 23792-23801, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29983051

RESUMO

A rhombohedral BaRuO3 nanoperovskite, which was synthesized by the sol-gel method using malic acid, could act as an efficient heterogeneous catalyst for the selective oxidation of various aromatic and aliphatic sulfides with molecular oxygen as the sole oxidant. BaRuO3 showed much higher catalytic activities than other catalysts, including ruthenium-based perovskite oxides, under mild reaction conditions. The catalyst could be recovered by simple filtration and reused several times without obvious loss of its high catalytic performance. The catalyst effect, 18O-labeling experiments, and kinetic and mechanistic studies showed that substrate oxidation proceeds with oxygen species caused by the solid. The crystal structure of ruthenium-based oxides is crucial to control the nature of the oxygen atoms and significantly affects their oxygen transfer reactivity. Density functional theory calculations revealed that the face-sharing octahedra in BaRuO3 likely are possible active sites in the present oxidation in sharp contrast to the corner-sharing octahedra in SrRuO3, CaRuO3, and RuO2. The superior oxygen transfer ability of BaRuO3 is also applicable to the quantitative conversion of dibenzothiophene into the corresponding sulfone and gram-scale oxidation of 4-methoxy thioanisole, in which 1.20 g (71% yield) of the analytically pure sulfoxide could be isolated.

16.
Chem Commun (Camb) ; 54(50): 6772-6775, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29683181

RESUMO

Hexagonal BaFeO3-δ containing high valent iron species acted as an efficient heterogeneous catalyst for the aerobic oxidation of alkanes without the need for additives. The activity of BaFeO3-δ was much higher than that of typical Fe3+/Fe2+-containing iron oxide-based catalysts, and the recovered catalyst could be reused without significant loss of catalytic performance.

17.
J Am Chem Soc ; 139(33): 11493-11499, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28759206

RESUMO

Highly selective synthesis of primary amines over heterogeneous catalysts is still a challenge for the chemical industry. Ruthenium nanoparticles supported on Nb2O5 act as a highly selective and reusable heterogeneous catalyst for the low-temperature reductive amination of various carbonyl compounds that contain reduction-sensitive functional groups such as heterocycles and halogens with NH3 and H2 and prevent the formation of secondary amines and undesired hydrogenated byproducts. The selective catalysis of these materials is likely attributable to the weak electron-donating capability of Ru particles on the Nb2O5 surface. The combination of this catalyst and homogeneous Ru systems was used to synthesize 2,5-bis(aminomethyl)furan, a monomer for aramid production, from 5-(hydroxymethyl)furfural without a complex mixture of imine byproducts.

19.
Chem Sci ; 8(4): 3146-3153, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507690

RESUMO

Acid-base solid catalysts synthesized with structurally controlled uniform active sites can lead to unique catalysis. In this study, a CePO4 catalyst was synthesized using a hydrothermal method and found to exhibit high catalytic performance for the chemoselective acetalization of 5-hydroxymethylfurfural with alcohols, in sharp contrast to other homogeneous and heterogeneous acid and/or base catalysts. In the presence of CePO4, various combinations of carbonyl compounds and alcohols are efficiently converted into the corresponding acetal derivatives in good to excellent yields. Mechanistic studies show that CePO4 most likely acts as a bifunctional catalyst through the interaction of uniform Lewis acid and weak base sites with 5-hydroxymethylfurfural and alcohol molecules, respectively, which results in high catalytic performance.

20.
Chemistry ; 23(39): 9362-9368, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28514015

RESUMO

Mesoporous basic Mg-Al mixed metal oxides (MMOs) with a high surface area and large pore size have been prepared through the assembly of monodispersed layered double hydroxide nanoparticles (LDHNPs) with block copolymer templates. The particle sizes of the LDHNPs were mainly controlled by varying the concentration of tris(hydroxymethyl)aminomethane (THAM), which was used as a surface stabilizing agent. LDHNPs and micelles of a block copolymer (Pluronic F127) were assembled to form a composite. The composites were calcined to transform them into mesoporous MMOs and to remove the templates. The Brunauer-Emmett-Teller surface areas, mesopore sizes, and pore volumes increased as a result of using the templates. Moreover, the pore sizes of the mesoporous MMOs could be controlled by using LDHNPs of different sizes. The mesoporous MMOs prepared from the LDHNPs showed much higher catalytic activity than a conventional MMO catalyst for the Knövenagel condensation of ethyl cyanoacetate with benzaldehyde. The mesoporous MMO catalyst prepared using the smallest LDHNPs, about 12 nm in size, showed the highest activity. Therefore, the use of monodispersed LDHNPs and templates is effective for preparing highly active mesoporous solid base catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA