RESUMO
For both dielectric spectroscopy and light scattering spectra, the relaxation modes in the microwave region have been characterized by the Debye relaxation model, which is determined by the peak frequency, or by an empirically extended model (e.g., Cole-Davidson and Kohlrausch-Williams-Watts), which has the appropriate line shape. For light scattering from glass-forming liquids, the general line shape is a broader high frequency side in comparison with Debye relaxation. However, for triethylene glycol (TEG) in liquid form at room temperature, the lowest frequency Raman scattering (LFR) mode shows a peak at about 3.0 GHz, which is narrower than that expected for the Debye relaxation. With increasing temperature, this peak exhibits a significant blueshift and begins to resemble the Debye relaxation shape, indicating that the LFR mode of TEG is also a relaxation mode. The narrowing of the LFR mode of TEG is suggested to be caused from the increased non-whiteness of the fluctuation correlations due to increased hydrogen bonding. This is a consequence of breaking the Debye relaxation model's approximation of the overdamping and narrowing limits in the GHz region, which was found in this study by analyzing the relaxation modes of Raman scattering using the multiple random telegraph model for evaluating thermal bath correlation. The analysis results show that the LFR relaxation times of TEG and the main dielectric relaxation overlap only by 333 K. However, the second LFR mode and ß-relaxation at higher frequencies coincide over a wide temperature range, suggesting that they are corresponding modes.
RESUMO
Time-of-flight (TOF) neutron diffraction measurements on pure liquid deuterated methanol and concentrated methanolic LiClO4 and LiTFSA solutions have been carried out to investigate the effect of intermolecular hydrogen bonds on the intramolecular O-D distance (rOD) of the methanol molecule in the liquid state. Intramolecular parameters for the methanol molecule are determined by the least-squares fitting analysis of the neutron total interference term observed in the high-Q region. Attenuated total reflection (ATR) IR spectra have been measured for methanolic solutions of natural abundance to determine the gravitational center frequency (νOH) of the stretching vibrational band of the methanol molecule. The relationship between rOD and νOH is approximated well by a linear function. The value dνOH/drOD = -17000 ± 3000 cm-1 Å-1 has been derived from the slope of the fitted function. It has been revealed that the O-D bond length of the methanol molecule is sensitively affected by the intermolecular hydrogen bonding interaction.
RESUMO
Experimental evidence has been obtained for the structure-spectra relationship of hydrogen bonds in aqueous solutions. Intramolecular O-D distance, rOD, has been determined by the least-squares fitting analysis of the neutron interference term in the high-Q region observed for pure D2O and concentrated aqueous solutions. The average O-D stretching frequency, νOD, has been obtained from the position of the center of gravity of the observed ATR-IR O-D stretching band. The linear relationship between rOD and νOD has been confirmed in the liquid state. The slope of dνOD/drOD is evaluated to be -21â¯000 ± 1000 cm-1 Å-1.
Assuntos
Vibração , Água , Ligação de HidrogênioRESUMO
It has been reported that aqueous lithium ion batteries (ALIBs) can operate beyond the electrochemical window of water by using a superconcentrated electrolyte aqueous solution. The liquid structure, particularly the local structure of the Li+, which is rather different from conventional dilute solution, plays a crucial role in realizing the ALIB. To reveal the local structure around Li+, the superconcentrated LiTFSA (TFSA: bis(trifluoromethylsulfonil)amide) aqueous solutions were investigated by means of Raman spectroscopic experiments, high-energy X-ray total scattering measurements, and the neutron diffraction technique with different isotopic composition ratios of 6Li/7Li and H/D. The Li+ local structure changes with the increase of the LiTFSA concentration; the oligomer ([Lip(TFSA)q](p-q)+ (q > 2) forms at the molar fraction of LiTFSA (xLiTFSA) > 0.25. The average structure can be determined in which two water molecules and two oxygen atoms of TFSA anion(s) coordinate to the Li+ in the superconcentrated LiTFSA aqueous solution (LiTFSA)0.25(H2O)0.75. In addition, the intermolecular interaction between the neighboring water molecules was not found, and the hydrogen-bonded interaction in the solution should be significantly weak. According to the coordination number of the oxygen atom (TFSA or H2O), a variety of TFSA- and H2O coordination manners would exist in this solution; in particular, the oligomer is formed in which the monodentate TFSA cross-links Li+.
Assuntos
Lítio , Água , Íons , Difração de Nêutrons , Análise Espectral RamanRESUMO
To clarify proton conduction mechanism in protic ionic liquids (PILs) and pseudo-PILs (pPILs), equimolar mixtures of N-methylimidazole (C1Im) with fluorinated acetic acids were investigated by Raman spectroscopy, X-ray scattering, and dielectric relaxation spectroscopy (DRS). Only the ionic species exist in the equimolar mixture of C1Im and HTFA (HTFA: trifluoroacetic acid). On the other hand, the equimolar mixture of C1Im and HDFA (HDFA: difluoroacetic acid) consists of both ionic and electrically neutral species. In particular, not only the electrostatic but also van der Waals interactions with the F atoms were observed in the liquid structures of both [C1hIm+][TFA-] and [C1hIm+][DFA-]. The concept for proton conduction mechanism that we have proposed in previous study was revisited; the proton conduction mechanism could be classified with two linear free energy relationship lines for proton exchange reaction and translation/rotation of proton carriers. Our results exhibit that the proton conduction mechanism changes from proton hopping to vehicle mechanism with increasing acidity of an acid HA in PILs.
RESUMO
Neutron diffraction measurements on 6Li/7Li isotopically substituted 10 and 33 mol % *LiTFSA (lithium bis(trifluoromethylsulfonyl)amide)-AN-d3 (acetonitrile-d3) and 10 and 33 mol % *LiTFSA-DMF-d7(N,N-dimethylformamide-d7) solutions have been carried out in order to obtain structural insights on the first solvation shell of Li+ in highly concentrated organic solutions. Structural parameters concerning the local structure around Li+ have been determined from the least squares fitting analysis of the first-order difference function derived from the difference between carefully normalized scattering cross sections observed for 6Li-enriched and natural abundance solutions. In 10 mol % LiTFSA-AN-d3 solution, 3.25 ± 0.04 AN molecules are coordinated to Li+ with a intermolecular Li+···N(AN) distance of 2.051 ± 0.007 Å. It has been revealed that 1.67 ± 0.07 AN molecules and 2.00 ± 0.01 TFSA- are involved in the first solvation shell of Li+ in the 33 mol % LiTFSA-AN solution. The nearest neighbor Li+···NAN and Li+···OTFSA- distances are obtained to be r(Li+···N) = 2.09 ± 0.01 Å and r(Li+···O) = 1.88 ± 0.01 Å, respectively. The first solvation shell of Li+ in the 10 mol % LiTFSA-DMF-d7 solutions contains 3.4 ± 0.1 DMF molecules with an intermolecular Li+···ODMF distance of 1.95 ± 0.02 Å. In highly concentrated 33 mol % LiTFSA-DMF-d7 solutions, there are 1.3 ± 0.2 DMF molecules and 3.2 ± 0.2 TFSA- in the first solvation shell of Li+ with intermolecular distances of r(Li+···ODMF) = 1.90 ± 0.02 Å and r(Li+···OTFSA-) = 2.01 ± 0.01 Å, respectively. The Li+···TFSA- contact ion pair stably exists in highly concentrated 33 mol % LiTFSA-AN and -DMF solutions.
RESUMO
Lithium-glyme solvated ionic liquids (Li-G SILs) and superconcentrated electrolyte solutions (SCESs) are expected to be promising electrolytes for next-generation lithium secondary batteries. The former consists of only the oligoether glyme solvated lithium ion and its counteranion, and the latter contains no full solvated Li+ ion by the solvents due to the extremely high Li salt concentration. Although both of them are similar to each other, it is still unclear that both should be room-temperature ionic liquids. To distinctly define them, speciation analyses were performed with the Li-G SIL and the aqueous SCES to evaluate the free solvent concentration in these solutions with a new Raman/infrared spectral analysis technique called complementary least-squares analysis. Furthermore, from a thermodynamic point of view, we investigated the solvent activity and activity coefficient in the gas phase equilibrated with sample solutions and found they can be good criteria for SILs.
RESUMO
In a previous work, we have found that the pseudo-protic ionic liquid N-methylimidazolium acetate, [C1HIm][OAc] or [Hmim][OAc], mainly consists of the electrically neutral molecular species N-methylimidazole, C1Im, and acetic acid, AcOH, even though the mixture has significant ionic conductivity. This system was revisited by employing isotopic substitution Raman spectroscopy (ISRS) and pulsed field gradient (PFG) NMR self-diffusion measurements. The ISRS and PFG-NMR results obtained fully confirm our earlier findings. In particular, the self-diffusion coefficient of the hydroxyl hydrogen atom in AcOH is identical to that of the methyl hydrogen atoms within the experimental uncertainty, consistent with very little ionization. Therefore, a proton conduction mechanism similar to the Grotthuss mechanism for aqueous acid solutions is postulated to be responsible for the observed electrical conductivity. Laity resistance coefficients (rij) are calculated from the transport properties, and the negative values obtained for the like-ion interactions are consistent with the pseudo-ionic liquid description, that is, the mixture is indeed a very weak electrolyte. The structure and rotational dynamics of the mixture were also investigated using high-energy X-ray total scattering experiments, molecular dynamics simulations, and dielectric relaxation spectroscopy. Based on a comparison of activation energies and the well-known linear free energy relationship between the kinetics and thermodynamics of autoprotolysis, we propose for [C1HIm][OAc] a Grotthus-type proton conduction mechanism involving fast AcOH/AcO- rotation as a decisive step.
RESUMO
Neutron diffraction measurements have been carried out on 10 mol % LiTFSA (TFSA: bis(trifluoromethylsulfonil)amide) solutions in methanol- d4 and 2-propanol- d8 to obtain information on the solvation structure of Li+. The detailed coordination structure of solvent molecules within the first solvation shell of Li+ was determined through the least-squares fitting analysis of the difference function between normalized scattering cross sections observed for 6Li/7Li isotopically substituted sample solutions. The nearest-neighbor Li+···O distance and coordination number determined for the 10 mol % LiTFSA-methanol- d4 solution are rLiO = 1.98 ± 0.02 Å and nLiO = 3.8 ± 0.6, respectively. In the 2-propanol- d8 solution, it has been revealed that 2-propanol- d8 molecules within the first solvation shell of Li+ take at least two different coordination geometries with the intermolecular nearest-neighbor Li+···O distance of rLiO = 1.93 ± 0.04 Å. The Li+···O coordination number, nLiO = 3.3 ± 0.3, is determined. Ion-pair formation in the LiTFSA-methanol and LiTFSA-2-propanol solutions has been investigated by the attenuated total reflection infrared spectroscopic method. Mole fractions of free, Li+-bound, and aggregated TFSA- are derived from the peak deconvolution analysis of vibrational bands observed for TFSA-.
RESUMO
Neutron diffraction measurements have been carried out for 6Li/7Li isotopically substituted aqueous 1.0 mol % (0.5 mol/kg) LiCl and 1.1 mol % (0.56 mol/kg) LiClO4 solutions in D2O to obtain structural insight concerning hydration structure of Li+ in more dilute electrolyte solutions. The first-order difference function, ΔLi(Q), was analyzed by means of the least squares fitting procedure to obtain short-range structural parameters around the Li+. It was revealed that the nearest neighbor Li+···O(D2O) distance, rLiO, and the coordination number, nLiO, for the aqueous 1.0 mol % LiCl solution are 2.01 ± 0.02 Å and 5.9 ± 0.1, respectively. The values, rLiO = 1.97 ± 0.02 Å and nLiO = 6.1 ± 0.1, are obtained for aqueous 1.1 mol % LiClO4 solution. These results indicate that the hydration number of Li+ in a dilute solution is close to 6, which is much larger than 4, which has long been believed. A possible explanation is that the hydration number of Li+ varies with the solute concentration.
RESUMO
Isotropic Raman scattering and time-of-flight neutron diffraction measurements were carried out for concentrated LiTFSA-EC solutions to obtain structural insight on solvated Li+ as well as the structure of contact ion pair, Li+···TFSA-, formed in highly concentrated EC solutions. Symmetrical stretching vibrational mode of solvated Li+ and solvated Li+···TFSA- ion pair were observed at ν = 168-177 and 202-224 cm-1, respectively. Detailed structural properties of solvated Li+ and Li+···TFSA- contact ion pair were derived from the least-squares fitting analysis of first-order difference function, ΔLi(Q), between neutron scattering cross sections observed for 6Li/7Li isotopically substituted 10 and 25 mol % *LiTFSA-ECd4 solutions. It has been revealed that Li+ in the 10 mol % LiTFSA solution is fully solvated by ca. 4 EC molecules. The nearest neighbor Li+···O(EC) distance and Li+···O(EC)âC(EC) bond angle are determined to be 1.90 ± 0.01 Å and 141 ± 1°, respectively. In highly concentrated 25 mol % LiTFSA-EC solution, the average solvation number of Li+ decreases to ca. 3 and ca. 1.5. TFSA- are directly contacted to Li+. These results agree well with the results of band decomposition analyses of isotropic Raman spectra for intramolecular vibrational modes of both EC and TFSA-.
RESUMO
The prepeak structure of a 3 mol/kg solution of LiClO4 in propylene carbonate (PC) was studied by both neutron diffraction with isotopic substitution (NDIS) and molecular dynamics (MD) simulation. The NDIS data showed that the intensity of the prepeak decreases experimentally with an increase in the scattering length of the lithium atom from 7Li to 6Li in PC-d6. On the other hand, although the prepeak was observed in solutions of both PC-d6 and PC-h6, it disappears when the 1:1 mixture of PC-d6 and PC-h6 was used as the solvent. The prepeak structure and its variation with the isotope substitution were reproduced well by MD simulation, and they were explained in terms of the contrast of the scattering length densities of the ionic and nonpolar domains.
RESUMO
Equimolar mixtures of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and tetraglyme (G4: CH3O-(CH2CH2O)4-CH3) yield the solvate (or chelate) ionic liquid [Li(G4)][TFSA], which is a homogeneous transparent solution at room temperature. Solvate ionic liquids (SILs) are currently attracting increasing research interest, especially as new electrolytes for Li-sulfur batteries. Here, we performed neutron total scattering experiments with (6/7)Li isotopic substitution to reveal the Li(+) solvation/local structure in [Li(G4)][TFSA] SILs. The experimental interference function and radial distribution function around Li(+) agree well with predictions from ab initio calculations and MD simulations. The model solvation/local structure was optimized with nonlinear least-squares analysis to yield structural parameters. The refined Li(+) solvation/local structure in the [Li(G4)][TFSA] SIL shows that lithium cations are not coordinated to all five oxygen atoms of the G4 molecule (deficient five-coordination) but only to four of them (actual four-coordination). The solvate cation is thus considerably distorted, which can be ascribed to the limited phase space of the ethylene oxide chain and competition for coordination sites from the TFSA anion.
RESUMO
Low-frequency isotropic Raman scattering and time-of-flight neutron diffraction measurements were carried out for (6)Li/(7)Li and H/D isotopically substituted *LiCl- and *LiClO4-tetrahydrofuran (*THF) solutions in order to obtain microscopic insight into solvated Li(+), Li(+)···Cl(-) and Li(+)···ClO4(-) contact ion pairs formed in concentrated THF solutions. Symmetrical stretching vibrational mode of solvated Li(+) in LiCl and LiClO4 solutions was observed at ν = 181-184 and 140 cm(-1), respectively. The stretching vibrational mode of Li(+)···Cl(-) and Li(+)···ClO4(-) solvated contact ion pairs formed in 4 mol % (6)LiCl-THF-h8 and (7)LiCl-THF-h8 solutions was found at ν = 469 and 435 cm(-1), respectively. Detailed structural properties of solvated Li(+) and the contact ion pairs were derived from the least-squares fitting analyses of the first-order difference function, ΔLi(Q), obtained from neutron diffraction measurements on (6)Li/(7)Li isotopically substituted THF-d8 solutions. It has been revealed that Li(+) takes 4-fold coordination in the average local structure of Li(+)X(-)(THF)3, X = Cl and ClO4. The nearest neighbor Li(+)···O(THF) distance was determined to be 2.21 ± 0.01 Å and 2.07 ± 0.01 Å for 4 mol % *LiCl- and 10 mol % *LiClO4-THF-d8 solutions, respectively. The Li(+)···anion distances for Li(+)···Cl(-) and Li(+)···O(ClO4(-)) contact ion pairs were determined to be 2.4 ± 0.1 Å and 2.19 ± 0.01 Å, respectively. The nearest neighbor Li(+)···THF interaction is significantly modified by the anion in the first solvation shell.
RESUMO
Hydrofluoroethers have recently been used as the diluent to a lithium battery electrolyte solution to increase and decrease the ionic conductivity and the solution viscosity, respectively. In order to clarify the Li(+) local structure in the 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (HFE) diluted [Li(G4)][TFSA] (G4, tetraglyme; TFSA, bis(trifluoromethanesulfonyl)amide) solvate ionic liquid, Raman spectroscopic study has been done with the DFT calculations. It has turned out that the HFE never coordinates to the Li(+) directly, and that the solvent (G4) shared ion pair of Li(+) with TFSA anion (SSIP) and the contact ion pair between Li(+) and TFSA anion (CIP) are found in the neat and HFE diluted [Li(G4)][TFSA] solvate ionic liquid. It is also revealed that the two kinds of the CIP in which TFSA anion coordinates to the Li(+) in monodentate and bidentate manners (hereafter, we call them the monodentate CIP and the bidentate CIP, respectively) exist with the SSIP of predominant [Li(G4)](+) ion-pair species in the neat [Li(G4)][TFSA] solvate ionic liquid, and that the monodentate CIP decreases as diluting with the HFE. To obtain further insight, X-ray total scattering experiments (HEXTS) were carried out with the aid of MD simulations, where the intermolecular force field parameters, mainly partial atomic charges, have been newly proposed for the HFE and glymes. A new peak appeared at around 0.6-0.7 Å(-1) in X-ray structure factors, which was ascribed to the correlation between the [Li(G4)][TFSA] ion pairs. Furthermore, MD simulations were in good agreement with the experiments, from which it is suggested that the terminal oxygen atoms of the G4 in [Li(G4)](+) solvated cation frequently repeat coordinating/uncoordinating to the Li(+), although almost all of the G4 coordinates to the Li(+) to form [Li(G4)](+) solvated cation in the neat and HFE diluted [Li(G4)][TFSA] solvate ionic liquid.
RESUMO
Neutron diffraction measurements were carried out for CO2-absorbed aqueous 11 mol % 2-aminoethanol (MEA) D2O solutions (corresponding to 30 wt % MEA solution) in order to obtain information on both the intramolecular structure and intermolecular hydration structure of the MEA carbamate molecule in the aqueous solution. Neutron scattering cross sections observed for (MEA)0.11(D2O)0.89, (MEA)0.11(D2O)0.89(CO2)0.06, and (MEA)0.11(D2O)0.89(DCl)0.11 solutions with different (14)N/(15)N ratios were used to derive the first-order difference function, ΔN(Q), which involves environmental structural information around the nitrogen atom of the MEA molecule. Intramolecular geometry and intermolecular hydration structure of MEA, protonated MEA (MEAD(+)), and MEA carbamate (MEA-CO2) molecules were obtained through the least-squares fitting of the observed Δ(N)(Q) in the high-Q region and the intermolecular difference function, Δ(N)(inter)(Q), respectively. In the aqueous solution, the MEA molecule takes the gauche conformation (dihedral angle, â NCCO = 45 ± 3°), suggesting that an intramolecular hydrogen bond is formed. On the other hand, values of the dihedral angle â NCCO determined for MEAD(+) and MEA-CO2 molecules were 193 ± 4° and 214 ± 8°, respectively. These results imply that the intermolecular hydrogen bonds are dominated for MEAD(+) and MEA-CO2 molecules. The intermolecular nearest neighbor N···O(D2O) distance for the MEA molecule was determined to be 3.13 ± 0.01 Å, which suggests weak intermolecular interaction between the amino-nitrogen atom of MEA and water molecules in the first hydration shell. The nearest-neighbor N···O(D2O) distances for MEAD(+) and MEA-CO2 molecules, 2.79 ± 0.03 and 2.87 ± 0.04 Å, clearly indicate strong hydrogen bonds are formed among the amino group of these molecules and neighboring water molecules.
RESUMO
Free energy of contact ion-pair (CIP) formation of lithium ion with BF(4)(-) and PF(6)(-) in water, propylene carbonate (PC), dimethyl carbonate (DMC) are quantitatively analyzed using MD simulations combined with the energy representation method. The relative stabilities of the mono-, bi-, and tridentate coordination structures are assessed with and without solvent, and water, PC, and DMC are found to favor the CIP-solvent contact. The monodentate structure is typically most stable in these solvents, whereas the configuration is multidentate in vacuum. The free energy of CIP formation is not simply governed by the solvent dielectric constant, and microscopic analyses of solute-solvent interaction at a molecular level are then performed from energetic and structural viewpoints. Vacant sites of Li(+) cation in CIP are solvated with three carbonyl oxygen atoms of PC and DMC solvent molecules, and the solvation is stronger for the monodentate CIP than for the multidentate. Energetically favorable solute-solvent configurations are shown to be spatially more restricted for the multidentate CIP, leading to the observation that the solvent favors the monodentate coordination structure.
RESUMO
Liquid structure and the closest ion-ion interactions in a series of primary alkylammonium nitrate ionic liquids [C(n)Am(+)][NO(3)(-)] (n = 2, 3, and 4) were studied by means of high-energy X-ray diffraction (HEXRD) experiments with the aid of molecular dynamics (MD) simulations. Experimental density and X-ray structure factors are in good accordance with those evaluated with MD simulations. With regard to liquid structure, characteristic peaks appeared in the low Q (Q: a scattering vector) region of X-ray structure factors S(Q)'s for all ionic liquids studied here, and they increased in intensity with a peak position shift toward the lower Q side by increasing the alkyl chain length. Experimentally evaluated S(Q(peak))(r(max)) functions, which represent the S(Q) intensity at a peak position of maximum intensity Q(peak) as a function of distance (actually a integration range r(max)), revealed that characteristic peaks in the low Q region are related to the intermolecular anion-anion correlation decrease in the r range of 10-12 Å. Appearance of the peak in the low Q region is probably related to the exclusion of the correlations among ions of the same sign in this r range by the alkyl chain aggregation. From MD simulations, we found unique and rather distorted NH···O hydrogen bonding between C(n)Am(+) (n = 2, 3, and 4) and NO(3)(-) in these ionic liquids regardless of the alkyl chain length. Subsequent ab initio calculations for both a molecular complex C(2)H(5)NH(2)···HONO(2) and an ion pair C(2)H(5)NH(3)(+)···ONO(2)(-) revealed that such distorted hydrogen bonding is specific in a liquid state of this family of ionic liquids, though the linear orientation is preferred for both the N···HO hydrogen bonding in a molecular complex and the NH···O one in an ion pair. Finally, we propose our interpretation of structural heterogeneity in PILs and also in APILs.
RESUMO
Liquid structures of the bis(trifluoromethanesulfonyl)amide based ionic liquids composed of 1-ethyl-3-methylimidazolium and N-methyl-N-propylpyrrolidinium ([C(2)mIm(+)][TFSA(-)] and [C(3)mPyrro(+)][TFSA(-)], respectively) and Li(+) ion solvation structure in their lithium salt solutions were studied by means of high-energy X-ray diffraction (HEXRD) technique with the aid of MD simulations. With regard to neat ionic liquids, a small but significant difference was found at around 3.5 Å in the intermolecular radial distribution functions G(inter)(r)s for these two ionic liquids; i.e., G(inter)(r) for [C(2)mIm(+)][TFSA(-)] was positioned at a slightly shorter region relative to that for [C(3)mPyrro(+)][TFSA(-)], which suggests that the nearest neighboring cation-anion interaction in the imidazolium ionic liquid is slightly greater than that in the other. With regard to Li(+) ion solvation structure, G(inter)(r)s for [C(2)mIm(+)][TFSA(-)] dissolving Li(+) ion exhibited additional small peak of about 1.9 Å attributable to the Li(+)-O (TFSA(-)) atom-atom correlation, though the corresponding peak was unclear in [C(3)mPyrro(+)][TFSA(-)] due to overlapping with the intramolecular atom-atom correlations in [C(3)mPyrro(+)]. In addition, the long-range density fluctuation observed in the neat ionic liquids diminished with the increase of Li(+) ion concentration for both ionic liquid solutions. These observations indicate that the large scale Li(+) ion solvated clusters are formed in the TFSA based ionic liquids, and well support the formation of [Li(TFSA)(2)](+) cluster clarified by previous Raman spectroscopic studies. MD simulations qualitatively agree with the experimental facts, by which the decrease in the long-range oscillation amplitude of r(2){G(r) - 1} for the Li(+) containing ionic liquids can be ascribed to the variation in the long-range anion-anion correlations caused by the formation of the Li(+) ion solvated clusters.
RESUMO
Short- and long-range liquid structures of [C(n)mIm(+)][TFSA(-)] with n = 2, 4, 6, 8, 10, and 12 have been studied by high-energy x-ray diffraction (HEXRD) and small-angle neutron scattering (SANS) experiments with the aid of MD simulations. Observed x-ray structure factor, S(Q), for the ionic liquids with the alkyl-chain length n > 6 exhibited a characteristic peak in the low-Q range of 0.2-0.4 Å(-1), indicating the heterogeneity of their ionic liquids. SANS profiles I(H)(Q) and I(D)(Q) for the normal and the alkyl group deuterated ionic liquids, respectively, showed significant peaks for n = 10 and 12 without no form factor component for large spherical or spheroidal aggregates like micelles in solution. The peaks for n = 10 and 12 evidently disappeared in the difference SANS profiles ΔI(Q) [=I(D)(Q) - I(H)(Q)], although that for n = 12 slightly remained. This suggests that the long-range correlations originated from the alkyl groups hardly contribute to the low-Q peak intensity in SANS. To reveal molecular origin of the low-Q peak, we introduce here a new function; x-ray structure factor intensity at a given Q as a function of r, S(Q) (peak)(r). The S(Q) (peak)(r) function suggests that the observed low-Q peak intensity depending on n is originated from liquid structures at two r-region of 5-8 and 8-15 Å for all ionic liquids examined except for n = 12. Atomistic MD simulations are consistent with the HEXRD and SANS experiments, and then we discussed the relationship between both variations of low-Q peak and real-space structure with lengthening the alkyl group of the C(n)mIm.