Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
RSC Adv ; 14(43): 31683-31693, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39376530

RESUMO

To remove organic and inorganic agrochemicals from contaminated soil and water, adsorption has been regarded as a viable remediation approach. For the removal of organic pollutants, such as pesticides, cost-effective adsorbents have garnered a lot of interest. These include waste-derived materials, clay composites, metal-organic frameworks (MOFs), nanocomposites, and biochar-modified materials. In this study, copper ferrite (CuFe2O4) was prepared, characterized, and modified with aminated reduced graphene oxide (Am-rGO) to form a CuFe2O4/Am-rGO nanocomposite for the effective removal of imidacloprid (IMD) from water. The Langmuir isotherm model was used to determine the maximum adsorption capacity of the adsorbent (CuFe2O4/Am-rGO), which was estimated to be 13.1 (±1.5) mg g-1. At 0.5 mg L-1 IMD, the adsorbents were able to extract up to 97.8% of the IMD from the aqueous solution. The Freundlich model and the pseudo second-order model agreed well with the experimental data, proving that physisorption and chemosorption both played a role in the sorption process. CuFe2O4/Am-rGO nanocomposite offers high stability and improved reusability due to its improved removal efficiency. After five adsorption-desorption cycles, there was no appreciable reduction in elimination. Additionally, after adsorption tests, IMD can be easily removed after adsorption by an external magnetic field. These showed that Am-rGO had changed the surface of CuFe2O4 to make it easier for IMD to stick to it in aqueous solutions. When used adsorbent is co-processed with ethanol extraction and ultrasound cavitation, it can be regenerated and still work well as an adsorbent. Furthermore, CuFe2O4/Am-rGO demonstrated its environmental safety and ability to continue absorbing IMD across a variety of diverse matrices. As a result, this study demonstrates that CuFe2O4/Am-rGO is a long-lasting, easily prepared, and efficient adsorbent for the removal of IMD as one of the neonicotinoids.

2.
RSC Adv ; 14(28): 20163-20181, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38915326

RESUMO

Because of the serious risks they pose to the environment and public health, chlorophenols (CPs), a typical class of the most persistent organic pollutants, have drawn increasing attention. Monitoring CPs effectively has become a pressing and difficult problem. The rapidly increasing need for onsite and real-time CP detection has led to the consideration of electrochemical sensing as a workable solution. Molecularly imprinted polymer (MIP)-based electrochemical sensing has emerged as a promising area for environmental monitoring in response to this analytical problem. MIPs, in conjunction with miniature electrochemical transducers, provide the opportunity to detect target analytes in situ. These devices have the advantages of great chemical and physical stability, cheap production costs, good selectivity, and quick response times. Most studies suggest that these sensors use nanoparticles to improve their analytical properties, especially sensitivity. Furthermore, these sensors have successfully used real water samples without the need for time-consuming pretreatment procedures. This article provides an overview of electrochemical MIP-based sensors reported to detect CPs in water samples. To obtain the highest sensitivity, special consideration is given to the fabrication of the sensors, which includes the use of various functional monomers, sensing platforms, and materials. Several other parameters are also discussed, including the linear concentration range, limit of detection, and the types of water samples that were examined.

3.
Anal Methods ; 16(25): 4024-4040, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38860820

RESUMO

Environmental pollutants like chlorophenol chemicals and their derivatives are commonplace. These compounds serve as building blocks in the production of medicines, biocides, dyes, and agricultural chemicals. Chlorophenols enter the environment through several different pathways, including the breakdown of complex chlorinated hydrocarbons, industrial waste, herbicides, and insecticides. Chlorophenols are destroyed thermally and chemically, creating dangerous chemicals that pose a threat to public health. Water in particular is affected, and thorough monitoring is required to find this source of pollution because it can pose a major hazard to both human and environmental health. For the detection of chlorophenols, molecularly imprinted polymers (MIPs) have been incorporated into a variety of electrochemical sensing systems and assay formats. Due to their long-term chemical and physical stability as well as their simple and affordable synthesis process, MIPs have become intriguing synthetic alternatives over the past few decades. In this review, we concentrate on the commercial potential of the MIP technology. Additionally, we want to outline the most recent advancements in their incorporation into electrochemical sensors with a high commercial potential for detecting chlorophenols.


Assuntos
Clorofenóis , Técnicas Eletroquímicas , Polímeros Molecularmente Impressos , Clorofenóis/análise , Clorofenóis/química , Polímeros Molecularmente Impressos/química , Técnicas Eletroquímicas/métodos , Humanos , Poluentes Ambientais/análise
4.
Mikrochim Acta ; 191(6): 313, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717608

RESUMO

Copper levels in biological fluids are associated with Wilson's, Alzheimer's, Menke's, and Parkinson's diseases, making them good biochemical markers for these diseases. This study introduces a miniaturized screen-printed electrode (SPE) for the potentiometric determination of copper(II) in some biological fluids. Manganese(III) oxide nanoparticles (Mn2O3-NPs), dispersed in Nafion, are drop-casted onto a graphite/PET substrate, serving as the ion-to-electron transducer material. The solid-contact material is then covered by a selective polyvinyl chloride (PVC) membrane incorporated with 18-crown-6 as a neutral ion carrier for the selective determination of copper(II) ions. The proposed electrode exhibits a Nernstian response with a slope of 30.2 ± 0.3 mV/decade (R2 = 0.999) over the linear concentration range 5.2 × 10-9 - 6.2 × 10-3 mol/l and a detection limit of 1.1 × 10-9 mol/l (69.9 ng/l). Short-term potential stability is evaluated using constant current chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). A significant improvement in the electrode capacitance (91.5 µF) is displayed due to the use of Mn2O3-NPs as a solid contact. The presence of Nafion, with its high hydrophobicity properties, eliminates the formation of the thin water layer, facilitating the ion-to-electron transduction between the sensing membrane and the conducting substrate. Additionally, it enhances the adhesion of the polymeric sensing membrane to the solid-contact material, preventing membrane delamination and increasing the electrode's lifespan. The high selectivity, sensitivity, and potential stability of the proposed miniaturized electrode suggests its use for the determination of copper(II) ions in human blood serum and milk samples. The results obtained agree fairly well with data obtained by flameless atomic absorption spectrometry.


Assuntos
Cobre , Éteres de Coroa , Eletrodos , Polímeros de Fluorcarboneto , Limite de Detecção , Compostos de Manganês , Óxidos , Potenciometria , Cobre/química , Polímeros de Fluorcarboneto/química , Óxidos/química , Compostos de Manganês/química , Humanos , Potenciometria/instrumentação , Potenciometria/métodos , Éteres de Coroa/química , Grafite/química
5.
Mikrochim Acta ; 191(3): 128, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334814

RESUMO

A paper-based analytical device (PAD) with an integrated composite electrode has been designed and fabricated for non-enzymatic creatinine sensing. Reduced graphene oxide (rGO) was employed to modify the PAD so that it could function as a solid-contact transducer. A new macrocyclic pyrido-hexapeptide derivative was made and used as a special ionophore in the creatinine membrane sensor. The synthesized PAD showed a detection limit of 1.0 µM (S/N = 3) and a potentiometric response towards creatinine throughout a log-linear range of 2.0 µM-10 mM (R2 = 0.9998). The sensor shows significant selectivity for a few related substances, including ephedrine, codeine, ketamine, caffeine, urea, urate, carbinoxamine, and dextromethorphan. It has been established that the testing method is appropriate for the direct potentiometric detection of creatinine in a variety of human urine sample types. When an indicating electrode and a reference electrode are put on the same flexible disposable, this lets applications with a small sample volume be done. For point-of-care creatinine measurement, the developed paper-based analytical equipment is a good choice because it is affordable, easily accessible, and self-pumping (especially when combined with potentiometric detection).


Assuntos
Urinálise , Humanos , Creatinina , Potenciometria , Eletrodos
6.
RSC Adv ; 14(3): 2134-2158, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38205235

RESUMO

Microplastics (5 µm) are a developing threat that contaminate every environmental compartment. The detection of these contaminants is undoubtedly an important topic of study because of their high potential to cause harm to ecosystems. For many years, scientists have been assiduously striving to surmount the obstacle of detection restrictions and minimize the likelihood of receiving results that are either false positives or false negatives. This study covers the current state of electrochemical sensing technology as well as its application as a low-cost analytical platform for the detection and characterization of novel contaminants. Examples of detection mechanisms, electrode modification procedures, device configuration, and performance are given to show how successful these approaches are for monitoring microplastics in the environment. Additionally included are the recent developments in nanoimpact techniques. Compared to electrochemical methods for microplastic remediation, the use of electrochemical sensors for microplastic detection has received very little attention. With an overview of microplastic electrochemical sensors, this review emphasizes the promise of existing electrochemical remediation platforms toward sensor design and development. In order to enhance the monitoring of these substances, a critical assessment of the requirements for future research, challenges associated with detection, and opportunities is provided. In addition to-or instead of-the now-in-use laboratory-based analytical equipment, these technologies can be utilized to support extensive research and manage issues pertaining to microplastics in the environment and other matrices.

7.
Int J Biol Macromol ; 255: 128007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977461

RESUMO

Water is a vital component of life; therefore, it is critical to have access to pure water for various life-sustaining activities including agriculture and human consumption. An eco-friendly nanocomposite based on chitosan (Cs) and nanomaterials (CaCO3-NPs) were combined to amalgamate the advantages of biopolymers and nanomaterials to overcome the problems of instability, poor mechanical properties, and low removal percentage of biopolymers. The as-prepared samples were characterized and were used for the removal of heavy metal from wastewater. X-ray diffractometer, Fourier transform infrared spectroscopy, and transmission electron microscope were used to distinguish the prepared absorbents. The absorption of the heavy metals by as-prepared samples was examined at different conditions. The kinetic and isotherm models of the adsorption process were also studied. The data showed that the removal percentages of Cd, Cu, Pb, Zn, Cr and Ni by the composite were 98.0, 94.8, 99.0, 97.9, 97.4 and 98.3 %, respectively. The kinetic and isothermal studies showed that the absorption of these metal ions by the samples obeyed a pseudo-second-order mechanism and Langmuir isotherm model, respectively. In addition, the maximum adsorption capacities of Cd, Cu, Pb, Zn, Cr, and Ni ions by as-prepared nanocomposite were 83.33, 47.84, 98.03, 89.28, 62.11, and 63.69 mg/g, respectively.


Assuntos
Quitosana , Metais Pesados , Nanocompostos , Nanopartículas , Poluentes Químicos da Água , Humanos , Quitosana/química , Cádmio/química , Chumbo , Metais Pesados/química , Biopolímeros/química , Adsorção , Nanopartículas/química , Íons , Água/química , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
8.
RSC Adv ; 13(51): 35926-35936, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090101

RESUMO

A screen-printed potentiometric sensor for the erythromycin macrolide antibiotic (ERY) that is affordable, highly selective, and sensitive is made, described, and used for drug monitoring. Two circular carbon dots with a diameter of 4 mm make up the sensor. Multiwalled carbon nanotubes and polyaniline (f-MWCNTs/PANi) nanocomposites are used to change one carbon spot, which is then used as an ion-to-electron transfer material. Ag/AgCl is applied to the other spot, which is then used as a reference electrode. A solid-state polyvinyl butyral (PVB) is placed onto the second carbon spot to work as a reference electrode, and an ERY molecularly imprinted drug polymer (MIP) is coated onto the f-MWCNTs/PANi-containing strip to serve as a drug identification sensing material. Chronopotentiometry (CP) is used to analyze the integrated sensor's performance characteristics. It is confirmed that f-MWCNTs/PANi has an increased impact on the potential stability as well as the sensing membrane's interfacial double-layer capacitance. At a detection limit of 9.6 ± 0.4 × 10-7 M, the developed sensor exhibits a Nernstian slope of 54.0 ± 0.5 mV per decade (R2 = 0.9994) over the linear range of 4.6 × 10-6 to 1.0 × 10-3 M. When exposed to different related substances such azithromycin, clarithromycin, dirithromycin, paracetamol, and ascorbic acid, the sensor exhibits excellent selectivity. For the direct potentiometric determination of ERY in some pharmaceutical formulations and in samples of spiked human urine, the assay method has been validated and shown to be adequate. The obtained recovery ranges from 93.0 ± 0.5 to 104.3 ± 0.7 of the nominal or spiked concentration, with a mean relative standard deviation of ±0.6%. Due to the near closeness of the responsive membrane and the liquid junction, the use of all-solid-state electrodes coupled with a planar disposable platform enables applications with a minimum sample volume. The effectiveness of the suggested sensor in a complex urine matrix points to its use in hospitals for quick overdose patient detection as well as for quality control/quality assurance tests in the pharmaceutical sector.

9.
ACS Omega ; 8(46): 43538-43545, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027332

RESUMO

In medicine, barbiturates are a class of depressive medications used as hypnotics, anticonvulsants, and anxiolytics. For the treatment of specific forms of epilepsy and seizures in young children in underdeveloped countries, the World Health Organization recommends phenobarbital (PBAR), a barbiturate drug. This review describes the fabrication and characterization of a paper-based analytical apparatus for phenobarbital detection that is straightforward, affordable, portable, and disposable. All of the solid-state ion-selective electrodes (ISEs) for PBAR as well as a Ag/AgCl reference electrode were constructed and optimized on a nonconductive paper substrate. Using carbon nanotube ink, the sensors were made to function as an ion-to-electron transducer and to make the paper conductive. A suitable polymeric membrane is drop-cast onto the surface of the carbon ink orifice. The pyrido-tetrapeptide and pyrido-hexapeptide derivatives, which were recently synthesized, functioned as distinct ionophores in the PBAR-membrane sensor, enabling its detection. With a detection limit of 5.0 × 10-7 M, the manufactured analytical device demonstrated a Nernstian response to PBAR anions in 50 mM phosphate buffer, pH 8.5, over a linear range of 1.0 × 10-6 to 1.0 × 10-3 M. The PBAR-based sensors showed quick (less than 5 s) response times for PBAR ion detection. The modified separate solution method was utilized to evaluate the selectivity pattern of these novel ionophores with respect to PBAR ions in comparison to other common anions. The analytical instrument that was exhibited on paper had good precision both within and between days. The suggested technology assisted in the detection of trace amounts of PBAR in real pharmaceutical samples. A comparison was made between the data acquired using the HPLC reference method and the information obtained by the recommended potentiometric approach. The described paper-based analytical device may be a good choice for point-of-care PBAR determination because it is cheap and easy to find and can self-pump (especially when combined with potentiometric detection).

10.
Environ Sci Pollut Res Int ; 30(48): 104976-104997, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723389

RESUMO

Persistent organic pollutants (POPs) including chlorophenols (CPs) are increasing in water effluents, creating serious problems for both aquatic and terrestrial lives. Several research attempts have considered the removal of CPs by functionalised nanomaterials as adsorbents and catalysts. Besides the unique crystal structure, spinel ferrite nanomaterials (SFNs) own interesting optical and magnetic properties that give them the potential to be utilised in the removal of different types of CPs. In this review, we highlighted the recent research work that focused on the application of SFNs in the removal of different CP substances based on the number of chlorine atom attached to the phenolic compound. We have also discussed the structure and properties of SFN along with their numerous characterisation tools. We demonstrated the importance of identifying the structure, surface area, porosity, optical properties, etc. in the efficiency of the SFN during the CP removal process. The reviewed research efforts applied photocatalysis, wet peroxide oxidation (WPO), persulfate activated oxidation and adsorption. The studies presented different paths of enhancing the SFN ability to remove the CPs including doping (ion substitution), oxide composite structure and polymer composite structure. Experimental parameters such as temperature, dosage of CPs and SFN structure have shown to have a major effect in the CP removal efficiency. More attention is needed to investigate the different properties of SFN that can be tailored through different techniques and expected to have major role in the removal mechanism of CPs.


Assuntos
Clorofenóis , Nanopartículas , Poluentes Químicos da Água , Águas Residuárias , Clorofenóis/química , Adsorção , Poluentes Químicos da Água/análise
11.
Aquat Toxicol ; 261: 106620, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37399782

RESUMO

Contaminated wastewater (WW) can cause severe hazards to numerous delicate ecosystems and associated life forms. In addition, human health is negatively impacted by the presence of microorganisms in water. Multiple pathogenic microorganisms in contaminated water, including bacteria, fungi, yeast, and viruses, are vectors for several contagious diseases. To avoid the negative impact of these pathogens, WW must be free from pathogens before being released into stream water or used for other reasons. In this review article, we have focused on pathogenic bacteria in WW and summarized the impact of the different types of pathogenic bacteria on marine organisms. Moreover, we presented a variety of physical and chemical techniques that have been developed to provide a pathogen-free aquatic environment. Among the techniques, membrane-based techniques for trapping hazardous biological contaminants are gaining popularity around the world. Besides, novel and recent advancements in nanotechnological science and engineering suggest that many waterborne pathogens could be inactivated using nano catalysts, bioactive nanoparticles, nanostructured catalytic membranes, nanosized photocatalytic structures, and electrospun nanofibers and processes have been thoroughly examined.


Assuntos
Nanoestruturas , Poluentes Químicos da Água , Humanos , Águas Residuárias , Organismos Aquáticos , Ecossistema , Poluentes Químicos da Água/toxicidade , Bactérias , Água/química
12.
ACS Omega ; 8(28): 25378-25384, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483228

RESUMO

Drugs that are illegal have long been a part of Egyptian society. The most widely misused form of narcotic is marijuana, also known as "bango", and other cannabis-related products like "hashish". The chemical profile of some available "hashish" in the local Egyptian illegal market and its possible country of origin are investigated using a gas chromatography-mass spectrometry technique in conjunction with a thermal separation probe (TSP/GC/MS). The TSP/GC/MS method reveals the presence of 23 different terpenes, of which caryophylla-4(12),8(13)-dien-5α-ol, isoaromadendrene epoxide, caryophyllene, and alloaromadendrene oxide-(1) are detected in high relative proportions. Ten cannabinoid components are also detected. These are cannabiorcochromene (CBC-C1), tetrahydrocannabivarin (THCV), delta-8-tetrahydrocannabinol (delta-8-THC), exo-THC, cannabichromene, cannabidiol (CBD), cannabielsoin (CBE), dronabinol (delta-9-THC), cannabigerol (CBG), and cannabinol (CBN). Phenotypic index (THC % + CBN %)/CBD %) is measured for the test samples to identify both the nature of the samples (fiber- or drug-type cannabis) and the country of origin.

13.
RSC Adv ; 13(22): 15199-15207, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37213337

RESUMO

One of the cardiac biomarkers, myoglobin (Mb), is important in the rapid identification of cardio-vascular disorders. Therefore, point-of-care monitoring is essential. Pursuing this goal, a robust, reliable, and affordable paper-based analytical apparatus for potentiometric sensing has been developed and characterized. The molecular imprint technique was used to create a customized biomimetic antibody for myoglobin (Mb) on the surface of carboxylated multiwalled carbon nanotubes (MWCNT-COOH). This was accomplished by attaching Mb to carboxylated MWCNTs' surfaces and then filling the empty spaces through the mild polymerization of acrylamide in N,N-methylenebisacrylamide and ammonium persulphate. The modification of the MWCNTs' surface was verified by SEM and FTIR analysis. A hydrophobic paper substrate coated with fluorinated alkyl silane (CF3(CF2)7CH2CH2SiCl3, CF10) has been coupled with a printed all-solid-state Ag/AgCl reference electrode. The presented sensors showed a linear range of 5.0 × 10-8 to 1.0 × 10-4 M with a potentiometric slope of -57.1 ± 0.3 mV decade-1 (R2 = 0.9998) and a detection limit of 28 nM at pH 4. Compared to creatinine, sucrose, fructose, galactose, sodium glutamate, thiamine, alanine, ammonium, uric acid, albumin, glutamine, guanine, troponine T, and glucose, the sensor showed good selectivity for Mb. It demonstrated a good recovery for the detection of Mb in several fake serum samples (93.0-103.3%), with an average relative standard deviation of 4.5%. The current approach might be viewed as a potentially fruitful analytical tool for obtaining disposable, cost-effective paper-based potentiometric sensing devices. These types of analytical devices can be potentially manufacturable at large scales in clinical analysis.

14.
Talanta ; 253: 123907, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36095941

RESUMO

A cost-effective, highly selective and sensitive paper-based potentiometric combined sensor for losartan potassium drug (LOS) is fabricated, characterized and used for the drug monitoring. The sensor consists of 2 strips of filter paper (20 × 5 mm each) as platform, each imprinted with 4 mm diameter circular spot of carbon. One carbon spot is covered by a reduced graphene oxide (rGO) for use as a substrate for the recognition sensor and the other without rGO is used for the reference electrode. LOS molecularly imprinted drug polymer (MIP) is applied onto the graphene oxide containing strip to act as a drug recognition sensing material and a solid-state polyvinyl butyral (PVB) is applied onto the second carbon spot to act as a reference electrode. Performance characteristics of the combined sensor are examined with chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). Increase effect of rGO on the interfacial double-layer capacitance of the sensing membrane and consequently on the potential stability is confirmed. The developed combined sensor (strip cell) displays a Nernstian slope of -58.2 ± 0.3 mV/decade (R2 = 0.9994) over the linear range 8.5 × 10-7 - 6.9 × 10-2 M with a detection limit of 2.7 ± 0.3 × 10-7 M. The sensor shows remarkable selectivity toward various related compounds especially those commonly used by the COVID-19 patients such as paracetamol, ascorbic acid and dextromethorphan. The assay method is validated and proved to be satisfactory for direct potentiometric determination of LOS-K in some pharmaceutical formulations and in spiked human urine samples. An average recovery of 96.3 ± 0.3-98.7 ± 0.6% of the nominal or spiked concentration and a mean relative standard deviation of ±0.6% are obtained. The use of an indicating and a reference electrodes combined into a single flexible disposable paper platform enables applications to a minimum sample volume due to the close proximity of the responsive membrane and the liquid junction. The efficiency of the proposed sensor in complex urine matrix suggests its application in hospitals for rapid diagnosis of overdose patients and for quality control/quality assurance tests in pharmaceutical industry.


Assuntos
COVID-19 , Polímeros Molecularmente Impressos , Humanos , Losartan , Carbono
15.
Polymers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432940

RESUMO

Using single-walled carbon nanotubes (SWCNTs) as an ion-to-electron transducer, a novel disposable all-solid-state desvenlafaxine-selective electrode based on a screen-printed carbon paste electrode was created. SWCNTs were put onto the carbon-paste electrode area, which was protected by a poly (vinyl chloride) (PVC) membrane with a desvenlafaxine-imprinted polymer serving as a recognition receptor. Electrochemical impedance spectroscopy and chronopotentiometric techniques were used to examine the electrochemical characteristics of the SWCNTs/PVC coating on the carbon screen-printed electrode. The electrode displayed a 57.2 ± 0.8 mV/decade near-Nernstian slope with a 2.0 × 10-6 M detection limit. In 10 mM phosphate buffer, pH 6, the ODV-selective electrodes displayed a quick reaction (5 s) and outstanding stability, repeatability, and reproducibility. The usefulness of electrodes was demonstrated in samples of ODV-containing pharmaceutical products and human urine. These electrodes have the potential to be mass produced and employed as disposable sensors for on-site testing, since they are quick, practical, and inexpensive.

16.
Sci Rep ; 12(1): 18037, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302929

RESUMO

Recently, drug-controlled release nanotechnology has gained special attention in biomedicine. This work focuses on developing novel electrospun polymeric nanofibers (NFs) for buccal delivery of VEN to avoid the hepatic metabolism and enzymatic degradation in the GIT and develop an effective control of drug release. The optimized NFs were obtained by blending polylactic acid (PLA), and poly (ɛ-caprolactone) (PCL) fixed at a ratio of 1:1. It was characterized for morphology, drug-loading, FTIR, XRD, DSC, and in vitro drug release. Ex vivo permeability of the blend NFs was assessed using chicken pouch mucosa compared to VEN suspension, followed by histopathological examination. Further, the cytotoxic effect in three different cell lines using WST-1 assay. SEM morphologies refer to defect-free uniform NFs of PLA, PCL, and PLA/PCL mats. These fibers had a diameter ranging from 200 to 500 nm. The physico-thermal characterization of NFs depicted that the drug was successfully loaded and in an amorphous state in the PLA/PCL NFs. In vitro release of NFs substantiated a bi-phasic profile with an initial burst release of about 30% in the initial 0.5 h and a prolonged cumulative release pattern that reached 80% over 96 h following a non-Fickian diffusion mechanism. Ex vivo permeation emphasizes the major enhancement of the sustained drug release and the noticeable decrease in the permeability of the drug from NFs. Cytotoxicity data found that IC50 of VEN alone was 217.55 µg/mL, then VEN-NFs recorded an IC50 value of 250.62 µg/mL, and plain NFs showed the lowest toxicity and IC50 440.48 µg/mL in oral epithelial cells (OEC). Histopathology and cell toxicity studies demonstrated the preserved mucosal architecture and the preclinical safety. The developed PLA/PCL NFs can be promising drug carriers to introduce a step-change in improved psychiatric treatment healthcare.


Assuntos
Nanofibras , Polímeros , Cloridrato de Venlafaxina , Preparações de Ação Retardada/farmacologia , Poliésteres
17.
Anal Chim Acta ; 1227: 340239, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36089329

RESUMO

A novel screen-printed electrode (SPE) for potentiometric determination of nalbuphine (NAL) is described. Carboxylated multi-walled carbon nano tubes/polyaniline (f-MWCNTs/PANI) nanocomposite is used as an ion-to- electron transducer and is covered by a selective polyvinyl chloride (PVC) membrane incorporated with molecularly imprinted drug polymer (MIP) beads as a recognition receptor for potentiometric determination a synthetic narcotic, nalbuphine (NAL). The SPE displays a Nernstian response with a slope of 60.3 ± 1.2 mV/decade (R2 = 0.999) over the concentration range 2.4 × 10-7 - 5.0 × 10-2 mol/L and a detection limit of 1.1 × 10-7 mol/L (0.04 µg/mL) with response time less than 20 s (<20 s). The interfacial capacitance of the proposed SPE is measured using chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). The use of the f-MWCNTs/PANI nanocomposite layer improved the interfacial capacitance reached 52.5 µF. Besides, it eliminated the formation of the undesired thin water-layer between the sensing membrane and the conducting substrate. This prevents membrane delamination and increases potential stability. The obtained high selectivity, sensitivity and potential stability offered a great applicability of the proposed SPE for the determination of nalbuphine in hospitals for rapid diagnosis of overdose patients and for quality control/quality assurance in pharmaceutical industry.


Assuntos
Nalbufina , Nanotubos de Carbono , Compostos de Anilina , Eletrodos , Humanos , Polímeros Molecularmente Impressos , Nanotubos de Carbono/química , Preparações Farmacêuticas , Transdutores
18.
ACS Omega ; 7(37): 32988-32995, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157763

RESUMO

For potentiometric sensing of barbital (BAR), unique micro-sized imprinted polymer/multiwalled carbon nanotube (MWCNT)-based sensors are introduced. MWCNT is a lipophilic ion-to-electron transducing substance. A synthetic, described, and integrated barbital sodium molecular imprinted polymer (MIP) was used as a recognition receptor for potentiometric transduction in a plasticized polyvinyl chloride membrane. Methacrylic acid and ethylene glycol dimethacrylic acid are used as the functional monomer and crosslinking agent, respectively, in the synthesis of the MIPs. In the operating concentration range of 1.0 × 10-3 to 2.0 × 10-7 M, the sensors' Nernstian slope was -56.8 ± 0.9 mV/decade, with a detection limit of 1.0 × 10-7 M. The sensor displayed an accurate response time of 10 s and consistent potential response in the pH range of 8.5-11. Using chronopotentiometry tests, the interfacial capacitance of the presented ion-to-electron transducer was assessed. When compared to sensors without MWCNTs, the interfacial double-layer capacitance for sensors based on those layers reached 52.5 µF. After the addition of the MWCNTs nanocomposite layer, the water layer was eliminated between the sensing membrane and the conducting substrate. A wide range of applications for the proposed sensors for BAR detection in real samples can be provided by the sensors' strong selectivity over the interfering species. The suggested sensors were successfully used to determine BAR in urine samples that had been spiked.

19.
ACS Omega ; 7(14): 12342-12353, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449914

RESUMO

The optimum conditions for the removal of uranium-238, thorium-232, and potassium-40 from wastewater and the discharge of nuclear facilities using multiwalled carbon nanotubes (CNTs) are described. The adsorption mechanism is mainly attributed to chemical interactions between the metal ions and surface functional groups of the CNTs. Batch adsorption experiments are carried out in order to study the effect of different parameters such as pH, contact time, initial metal ion concentration, adsorbent dose, and temperatures. Maximum metal removal (>98%) from solutions containing 20-120 Bq/L metal ions is achieved using a contact time of 15 min, a pH of 6.0, and 10 mg/L CNTs. The effect of temperature on the kinetics and equilibrium of adsorption on CNT particles is examined. Consistent with an exothermic reaction, an increase in the temperature resulted in an increase in the adsorption rate. Langmuir, Freundlich, and Dubinin-Radushkevich isotherms are applied to the data obtained at various temperatures. The Langmuir adsorption model is the best for data interpretations. The kinetics of adsorption reveals a pseudo-second-order mechanism. Thermodynamic parameters at 293 K (ΔG°, ΔH°, and ΔS°) for U-238, Th-232, and K-40 are -14590.7 kJ/mol, -6.66 kJ/mol, and 26.47 J/(mol K), -96,96.5 kJ/mol, -2.48 kJ/mol, and 14.17 J/(mol K), and -3922.09 kJ/mol, -1.32 kJ/mol, and 6.12 J/(mol K), respectively.

20.
RSC Adv ; 12(12): 7433-7445, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35424706

RESUMO

Chlorinated organic and phenolic compounds are still purely studied by many researchers because of their severe damage to the aquatic environment and their carcinogenic effect on many living organisms. Therefore, there is a great interest in removing these environmental pollutants from aqueous mediums by easy and inexpensive methods. Herein, novel nickel ferrite (NiFe2O4) nano composite modified with poly(aniline-co-o-toluidine) (PAOT) is prepared, characterized, and used for the removal of 2,4-dichlorophenol (2,4-DCP) as an organic chlorinated environmental pollutant. The morphological properties of the composite are characterized by Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and Brunauer-Emmett-Teller (BET) methods. The prepared composite is tested for the removal of the hazardous dichlorophenol pollutant from aqueous solutions. Under optimized conditions and with effective control of parameters including, contact time, pH of the test solution, adsorbent dose, and temperature, over 83% of the pollutant is adsorbed and removed. The adsorption capacity is 162 mg g-1. Adsorption kinetics, adsorption isotherm and some physicochemical parameters of the reaction are evaluated. The Redlich-Peterson isothermal model is the appropriate model for describing the adsorption process. These results indicate that NiFe2O4/PAOT nanocomposites are promising adsorbents for the removal of persistent organic pollutants (e.g., DCP) from aqueous solutions. The results also reveal that modification of NiFe2O4 particles with poly(aniline-co-o-toluidine) (PAOT) significantly enhances the adsorption capacity of the adsorbent. This is probably due to the electrostatic attraction and non-covalent interactions (e.g. π-π) between the aromatic rings in both dichlorophenol and poly(aniline-co-o-toluidine) copolymer. Advantages offered by using NiFe2O4/PAOT nanocomposites are the high stability, reasonable efficiency, reusability for at least five adsorption-desorption cycles and the ability to remove the adsorbent from aqueous solutions for reuse using an external magnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA