Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Infect Dis Poverty ; 13(1): 26, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486340

RESUMO

We look at the link between climate change and vector-borne diseases in low- and middle-income countries in Africa. The large endemicity and escalating threat of diseases such as malaria and arboviral diseases, intensified by climate change, disproportionately affects vulnerable communities globally. We highlight the urgency of prioritizing research and development, advocating for robust scientific inquiry to promote adaptation strategies, and the vital role that the next generation of African research leaders will play in addressing these challenges. Despite significant challenges such as funding shortages within countries, various pan-African-oriented funding bodies such as the African Academy of Sciences, the Africa Research Excellence Fund, the Wellcome Trust, the U.S. National Institutes of Health, and the Bill and Melinda Gates Foundation as well as initiatives such as the African Research Initiative for Scientific Excellence and the Pan-African Mosquito Control Association, have empowered (or are empowering) these researchers by supporting capacity building activities, including continental and global networking, skill development, mentoring, and African-led research. This article underscores the urgency of increased national investment in research, proposing the establishment of research government agencies to drive evidence-based interventions. Collaboration between governments and scientific communities, sustained by pan-African funding bodies, is crucial. Through these efforts, African nations are likely to enhance the resilience and adaptive capacity of their systems and communities by navigating these challenges effectively, fostering scientific excellence and implementing transformative solutions against climate-sensitive vector-borne diseases.


Assuntos
Malária , Humanos , África/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Pesquisadores , Mudança Climática , Fortalecimento Institucional
2.
Front Cell Infect Microbiol ; 13: 1132495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056704

RESUMO

Introduction: Despite a high fatality rate in humans, little is known about the occurrence of Crimean-Congo hemorrhagic fever virus (CCHFV) in Cameroon. Hence, this pioneer study was started with the aim of determining the prevalence of CCHFV in domestic ruminants and its potential vector ticks in Cameroon. Methods: A cross-sectional study was carried out in two livestock markets of Yaoundé to collect blood and ticks from cattle, sheep, and goats. CCHFV-specific antibodies were detected in the plasma using a commercial ELISA assay and confirmed using a modified seroneutralization test. Ticks were screened for the presence of orthonairoviruses by amplification of a fragment of the L segment using RT-PCR. Phylogeny was used to infer the genetic evolution of the virus. Results: Overall, 756 plasma samples were collected from 441 cattle, 168 goats, and 147 sheep. The seroprevalence of CCHFV was 61.77% for all animals, with the highest rate found in cattle (433/441, 98.18%) followed by sheep (23/147, 15.65%), and goats (11/168, 6.55%), (p-value < 0.0001). The highest seroprevalence rate was found in cattle from the Far North region (100%). Overall, 1500 ticks of the Rhipicephalus (773/1500, 51.53%), Amblyomma (341/1500, 22.73%), and Hyalomma (386/1500, 25.73%) genera were screened. CCHFV was identified in one Hyalomma truncatum pool collected from cattle. Phylogenetic analysis of the L segment classified this CCHFV strain within the African genotype III. Conclusion: These seroprevalence results call for additional epidemiological studies on CCHFV, especially among at-risk human and animal populations in high-risk areas of the country.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Ixodidae , Rhipicephalus , Animais , Humanos , Bovinos , Ovinos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Gado , Camarões/epidemiologia , Estudos Soroepidemiológicos , Prevalência , Estudos Transversais , Filogenia , Cabras
3.
Sci Rep ; 13(1): 130, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599854

RESUMO

Laboratory and field-based studies of the invasive mosquito Aedes albopictus demonstrate its competency to transmit over twenty different pathogens linked to a broad range of vertebrate hosts. The vectorial capacity of Ae. albopictus to transmit these pathogens remains unclear, partly due to knowledge gaps regarding its feeding behavior. Blood meal analyses from field-captured specimens have shown vastly different feeding patterns, with a wide range of anthropophagy (human feeding) and host diversity. To address this knowledge gap, we asked whether differences in innate host preference may drive observed variation in Ae. albopictus feeding patterns in nature. Low generation colonies (F2-F4) were established with field-collected mosquitoes from three populations with high reported anthropophagy (Thailand, Cameroon, and Florida, USA) and three populations in the United States with low reported anthropophagy (New York, Maryland, and Virginia). The preference of these Ae. albopictus colonies for human versus non-human animal odor was assessed in a dual-port olfactometer along with control Ae. aegypti colonies already known to show divergent behavior in this assay. All Ae. albopictus colonies were less likely (p < 0.05) to choose the human-baited port than the anthropophilic Ae. aegypti control, instead behaving similarly to zoophilic Ae. aegypti. Our results suggest that variation in reported Ae. albopictus feeding patterns are not driven by differences in innate host preference, but may result from differences in host availability. This work is the first to compare Ae. albopictus and Ae. aegypti host preference directly and provides insight into differential vectorial capacity and human feeding risk.


Assuntos
Aedes , Animais , Odorantes , Comportamento Alimentar , Florida , Tailândia
4.
Med Vet Entomol ; 37(1): 143-151, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36264191

RESUMO

Aedes-transmitted arboviruses have spread globally due to the spread of Aedes aegypti and Aedes albopictus. Its distribution is associated with human and physical geography. However, these factors have not been quantified in Cameroon. Therefore, the aim was to develop an Ae. albopictus geo-referenced database to examine the risk factors associated with the vector distribution in Cameroon. Data on the Ae. albopictus presence and absence were collated and mapped from studies in published scientific literature between 2000 and 2020. Publicly available earth observation data were used to assess human geography, land use and climate risk factors related to the vector distribution. A logistic binomial regression was conducted to identify the significant risk factors associated with Ae. albopictus distribution. In total, 111 data points were collated (presence = 87; absence = 24). Different data collection methods and sites hindered the spatiotemporal analysis. An increase of one wet month in a year increased the odds of Ae. albopictus presence by 5.6 times. One unit of peri-urban area increased the odds by 1.3 times. Using publicly available demographic and environmental data to better understand the key determinants of mosquito distributions may facilitate appropriately targeted public health messages and vector control strategies.


Assuntos
Aedes , Humanos , Animais , Mosquitos Vetores , Camarões , Geografia , Demografia
5.
PLoS One ; 17(12): e0278779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36512581

RESUMO

Prevention and control of Aedes-borne viral diseases such as dengue rely on vector control, including the use of insecticides and reduction of larval sources. However, this is threatened by the emergence of insecticide resistance. This study aimed to update the spatial distribution, the insecticide resistance profile of A. aegypti and A. albopictus and the potential resistant mechanisms implicated in the city of Douala. Immature stages of Aedes were collected in August 2020 in eight neighbourhoods in Douala and reared to adult stages. Adult bioassays, and piperonyl butoxide (PBO) synergist assays were carried out according to World Health Organization recommendations. Expression of some candidate metabolic genes including Cyp9M6F88/87, Cyp9J28a, Cyp9J10 and Cyp9J32 in A. aegypti, and Cyp6P12 in A. albopictus were assessed using qPCR. A. aegypti adults G0 were screened using real time melting curve qPCR analyses to genotype the F1534C, V1016I and V410L Aedes kdr mutations. Overall, A. aegypti is the predominant Aedes species, but analyses revealed that both A. albopictus and A. aegypti coexist in all the prospected neighbourhoods of Douala. High level of resistance was observed to three pyrethroids tested in both Aedes species. In A. aegypti a lower mortality rate was reported to permethrin (5.83%) and a higher mortality rate to deltamethrin (63.74%). Meanwhile, for A. albopictus, lower (6.72%) and higher (84.11%) mortality rates were reported to deltamethrin. Similar analysis with bendiocarb, revealed for A. aegypti a loss of susceptibility. However, in A. albopictus samples, analyses revealed a susceptibility in Logbessou, and confirmed resistance in Kotto (59.78%). A partial recovery of mortality was found to insecticides after pre-exposure to PBO. Cyp6P12 was found significantly overexpressed in A. albopictus permethrin resistant and Cyp9M6F88/87 for A. aegypti deltamethrin resistant. F1534C, V1016I and V410L mutations were detected in A. aegypti from different neighbourhoods and by considering the combination of these three kdr 14 genotypes were found. These findings provide relevant information which should be capitalised in the implementation of arbovirus vector control strategies and insecticide resistance management.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Permetrina , Camarões , Mosquitos Vetores/genética , Piretrinas/farmacologia
6.
Parasit Vectors ; 15(1): 381, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271451

RESUMO

Arboviral diseases such as dengue, Zika and chikungunya transmitted by Aedes mosquitoes have been reported in 34 African countries. Available data indicate that in recent years there have been dengue and chikungunya outbreaks in the West Africa subregion, in countries including Côte d'Ivoire, Burkina Faso, Gabon, Senegal, and Benin. These viral diseases are causing an increased public health burden, which impedes poverty reduction and sustainable development. Aedes surveillance and control capacity, which are key to reducing the prevalence of arboviral infections, need to be strengthened in West Africa, to provide information essential for the formulation of effective vector control strategies and the prediction of arboviral disease outbreaks. In line with these objectives, the West African Aedes Surveillance Network (WAASuN) was created in 2017 at a meeting held in Sierra Leone comprising African scientists working on Aedes mosquitoes. This manuscript describes the proceedings and discusses key highlights of the meeting.


Assuntos
Aedes , Infecções por Arbovirus , Febre de Chikungunya , Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Mosquitos Vetores , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle , Côte d'Ivoire/epidemiologia , Dengue/epidemiologia
7.
PLoS Negl Trop Dis ; 16(8): e0010683, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35951644

RESUMO

BACKGROUND: Rift Valley fever (RVF) is a mosquito-borne zoonosis endemic in Africa. With little known of the burden or epidemiology of RVF virus (RVFV) in Cameroon, this study aimed to determine the seroprevalence of RVFV in domestic ruminants of various origins in two markets of Yaoundé, Cameroon. METHODOLOGY/PRINCIPAL FINDINGS: The origin of animals randomly sampled at two livestock markets in Yaoundé were recorded and plasma samples collected for competitive and capture Enzyme-linked Immunosorbent Assay (ELISA) to determine the prevalence of Immunoglobulins G (IgG) and Immunoglobulins M (IgM) antibodies. Following ELISA IgM results, a real-time reverse transcription-polymerase chain reaction (qRT-PCR) was performed to detect RVFV RNA. In June-August 2019, February-March 2020, and March-April 2021, 756 plasma samples were collected from 441 cattle, 168 goats, and 147 sheep. RVFV IgG seroprevalence was 25.7% for all animals, 42.2% in cattle, 2.7% in sheep, and 2.4% in goats. However, IgM seroprevalence was low, at 0.9% in all animals, 1.1% in cattle, 1.4% in sheep, and 0% in goats. The seroprevalence rates varied according to the animal's origin with the highest rate (52.6%) in cattle from Sudan. In Cameroon, IgG and IgM rates respectively were 45.1% and 2.8% in the North, 44.8% and 0% in the Adamawa, 38.6% and 1.7% in the Far-North. All IgM positive samples were from Cameroon. In cattle, 2/5 IgM positive samples were also IgG positive, but both IgM positive samples in sheep were IgG negative. Three (42.9%) IgM positive samples were positive for viral RVFV RNA using qRT-PCR but given the high ct values, no amplicon was obtained. CONCLUSION/SIGNIFICANCE: These findings confirm the circulation of RVFV in livestock in Cameroon with prevalence rates varying by location. Despite low IgM seroprevalence rates, RVF outbreaks can occur without being noticed. Further epidemiological studies are needed to have a broad understanding of RVFV transmission in Cameroon.


Assuntos
Doenças dos Bovinos , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Animais , Anticorpos Antivirais , Camarões/epidemiologia , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Cabras , Imunoglobulina G , Imunoglobulina M , Gado , RNA Viral/genética , Vírus da Febre do Vale do Rift/genética , Ruminantes , Estudos Soroepidemiológicos , Ovinos
8.
Nat Commun ; 13(1): 4490, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918360

RESUMO

First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika.


Assuntos
Aedes , Infecção por Zika virus , Zika virus , Animais , Surtos de Doenças , Humanos , Recém-Nascido , Mosquitos Vetores
9.
Infect Dis Poverty ; 11(1): 90, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35974351

RESUMO

BACKGROUND: Dengue (DENV), chikungunya (CHIKV) and Zika virus (ZIKV), are mosquito-borne viruses of medical importance in most tropical and subtropical regions. Vector control, primarily through insecticides, remains the primary method to prevent their transmission. Here, we evaluated insecticide resistance profiles and identified important underlying resistance mechanisms in populations of Aedes aegypti and Ae. albopictus from six different regions in Cameroon to pesticides commonly used during military and civilian public health vector control operations. METHODS: Aedes mosquitoes were sampled as larvae or pupae between August 2020 and July 2021 in six locations across Cameroon and reared until the next generation, G1. Ae. aegypti and Ae. albopictus adults from G1 were tested following World Health Organization (WHO) recommendations and Ae. aegypti G0 adults screened with real time melting curve qPCR analyses to genotype the F1534C, V1016I and V410L Aedes kdr mutations. Piperonyl butoxide (PBO) assays and real time qPCR were carried out from some cytochrome p450 genes known to be involved in metabolic resistance. Statistical analyses were performed using Chi-square test and generalized linear models. RESULTS: Loss of susceptibility was observed to all insecticides tested. Mortality rates from tests with 0.25% permethrin varied from 24.27 to 85.89% in Ae. aegypti and from 17.35% to 68.08% in Ae. albopictus. Mortality rates for 0.03% deltamethrin were between 23.30% and 88.20% in Ae. aegypti and between 69.47 and 84.11% in Ae. albopictus. We found a moderate level of resistance against bendiocarb, with mortality rates ranging from 69.31% to 90.26% in Ae. aegypti and from 86.75 to 98.95% in Ae. albopictus. With PBO pre-exposure, we found partial or fully restored susceptibility to pyrethroids and bendiocarb. The genes Cyp9M6F88/87 and Cyp9J10 were overexpressed in Ae. aegypti populations from Douala sites resistant to permethrin and deltamethrin. Cyp6P12 was highly expressed in alphacypermethrin and permethrin resistant Ae. albopictus samples. F1534C and V1016I mutations were detected in A. aegypti mosquitoes and for the first time V410L was reported in Cameroon. CONCLUSIONS: This study revealed that Ae. aegypti and Ae. albopictus are resistant to multiple insecticide classes with multiple resistance mechanisms implicated. These findings could guide insecticide use to control arbovirus vectors in Cameroon.


Assuntos
Aedes , Inseticidas , Piretrinas , Infecção por Zika virus , Zika virus , Animais , Camarões , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação , Permetrina/farmacologia , Piretrinas/farmacologia
10.
Med Vet Entomol ; 36(3): 309-319, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35869781

RESUMO

The response to recent dengue outbreaks in Burkina Faso was insecticide-based, despite poor knowledge of the vector population's susceptibility to the insecticides used. Here, we report on the susceptibility to the main insecticide classes and identify important underlying mechanisms in Aedes aegypti populations in Ouagadougou and Banfora, in 2019 and 2020. Wild Ae. aegypti were tested as adults in WHO bioassays and then screened in real time melting curve qPCR analyses to genotype the F1534C, V1016I, and V410L Aedes kdr mutations. Ae. aegypti showed moderate resistance to 0.1% bendiocarb (80-95% survival post-exposure), 0.8% Malathion (60-100%), 0.21% pirimiphos-methyl (75% - 97%), and high resistance to 0.03% deltamethrin (20-70%). PBO pre-exposure partially restored pyrethroid susceptibility. Genotyping detected high frequency of 1534C allele (0.92) and moderate 1016I (0.1-0.32). The V410L mutation was detected in Burkina Faso for the first time (frequency 0.1-0.36). Mosquitoes surviving 4 h exposure to 0.03% deltamethrin had significantly higher frequencies of the F1534C mutation than dead mosquitoes (0.70 vs. 0.96, p < 0.0001) and mosquitoes surviving 2 - 4 h exposure had a significantly reduced life span. Ae. aegypti from Burkina Faso are resistant to multiple insecticide classes with multiple mechanisms involved, demonstrating the essential role of insecticide resistance monitoring within national dengue control programmes.


Assuntos
Aedes , Dengue , Inseticidas , Piretrinas , Aedes/fisiologia , Animais , Burkina Faso , Dengue/prevenção & controle , Dengue/veterinária , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação , Piretrinas/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-35726222

RESUMO

Western Africa is vulnerable to arboviral disease transmission, having recently experienced major outbreaks of chikungunya, dengue, yellow fever and Zika. However, there have been relatively few studies on the natural history of the two major human arbovirus vectors in this region, Aedes aegypti and Ae. albopictus, potentially limiting the implementation of effective vector control. We systematically searched for and reviewed relevant studies on the behaviour and ecology of Ae. aegypti and Ae. albopictus in Western Africa, published over the last 40 years. We identified 73 relevant studies, over half of which were conducted in Nigeria, Senegal, or Côte d'Ivoire. Most studies investigated the ecology of Ae. aegypti and Ae. albopictus, exploring the impact of seasonality and land cover on mosquito populations and identifying aquatic habitats. This review highlights the adaptation of Ae. albopictus to urban environments and its invasive potential, and the year-round maintenance of Ae. aegypti populations in water storage containers. However, important gaps were identified in the literature on the behaviour of both species, particularly Ae. albopictus. In Western Africa, Ae. aegypti and Ae. albopictus appear to be mainly anthropophilic and to bite predominantly during the day, but further research is needed to confirm this to inform planning of effective vector control strategies. We discuss the public health implications of these findings and comment on the suitability of existing and novel options for control in Western Africa.

12.
Med Vet Entomol ; 36(3): 283-300, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35656818

RESUMO

Little is known about the impact of ticks on livestock and humans in Cameroon. This study aimed to determine the prevalence, seasonal variation, and genetic diversity of hard ticks in the country. Ticks were collected during a cross-sectional survey on domestic livestock in two markets of Yaoundé in 2019 and 2020 and identified using morphological keys, 16S ribosomal DNA, (16S rDNA), and the cytochrome c oxidase subunit 1 (Cox1) genes. The infestation rates were 39.18%, 11.53%, and 2.74% in cattle, sheep, and goats respectively. Three genera of ticks were identified, Rhipicephalus, Amblyomma, and Hyalomma comprising eleven tick species. The main species were Rhipicephalus decoloratus (30.25%), R. microplus (24.43%), and Amblyomma variegatum (12.96%). Rhipicephalus spp. (81.31%) and Amblyomma variegatum (51.54%) were abundant during the rainy season, while Hyalomma spp. (83.86%) during the dry season (p-value <0.00001). Cox1 and 16S rDNA analysis showed a high level of genetic diversity among tick species with sequences close to those observed across Africa. Phylogenetic analysis revealed that our R. microplus belong to clade A and we identified R. sanguineus s.l. as R. linnea. This study shows a high tick infestation rate in cattle, while low in small ruminants with an extensive diversity of tick species, including several known vectors of important tick-borne diseases.


Assuntos
Doenças dos Bovinos , Ixodidae , Rhipicephalus , Doenças dos Ovinos , Infestações por Carrapato , Animais , Camarões/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Estudos Transversais , DNA Ribossômico , Variação Genética , Humanos , Gado , Filogenia , Rhipicephalus/genética , Estações do Ano , Ovinos , Doenças dos Ovinos/epidemiologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária
13.
PLoS Negl Trop Dis ; 15(10): e0009860, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695135

RESUMO

Acute febrile patients presenting at hospitals in Douala, Cameroon between July and December 2020, were screened for dengue infections using real time RT-PCR on fragments of the 5' and 3' UTR genomic regions. In total, 12.8% (41/320) of cases examined were positive for dengue. Dengue virus 3 (DENV-3) was the most common serotype found (68.3%), followed by DENV-2 (19.5%) and DENV-1 (4.9%). Co-infections of DENV-3 and DENV-2 were found in 3 cases. Jaundice and headache were the most frequent clinical signs associated with infection and 56% (23/41) of the cases were co-infections with malaria. Phylogenetic analysis of the envelope gene identified DENV-1 as belonging to genotype V, DENV-2 to genotype II and DENV-3 to genotype III. The simultaneous occurrence of three serotypes in Douala reveals dengue as a serious public health threat for Cameroon and highlights the need for further epidemiological studies in the major cities of this region.


Assuntos
Vírus da Dengue/isolamento & purificação , Dengue/virologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Camarões/epidemiologia , Criança , Pré-Escolar , Coinfecção/epidemiologia , Coinfecção/virologia , Dengue/epidemiologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Filogenia , Sorogrupo , Adulto Jovem
14.
Nat Commun ; 11(1): 5801, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199712

RESUMO

Historically endemic to Sub-Saharan Africa and South America, yellow fever is absent from the Asia-Pacific region. Yellow fever virus (YFV) is mainly transmitted by the anthropophilic Aedes mosquitoes whose distribution encompasses a large belt of tropical and sub tropical regions. Increasing exchanges between Africa and Asia have caused imported YFV incidents in non-endemic areas, which are threatening Asia with a new viral emergence. Here, using experimental infections of field-collected mosquitoes, we show that Asian-Pacific Aedes mosquitoes are competent vectors for YFV. We observe that Aedes aegypti populations from Singapore, Taiwan, Thailand, and New Caledonia are capable of transmitting YFV 14 days after oral infections, with a number of viral particles excreted from saliva reaching up to 23,000 viral particles. These findings represent the most comprehensive assessment of vector competence and show that Ae. aegypti mosquitoes from the Asia-Pacific region are highly competent to YFV, corroborating that vector populations are seemingly not a brake to the emergence of yellow fever in the region.


Assuntos
Febre Amarela/transmissão , Febre Amarela/virologia , Vírus da Febre Amarela/fisiologia , Aedes/virologia , Animais , Ásia/epidemiologia , Geografia , Insetos Vetores/virologia , Modelos Lineares , Probabilidade , Fatores de Risco , Saliva/virologia , Carga Viral
15.
Infect Dis Poverty ; 9(1): 152, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138860

RESUMO

BACKGROUND: Aedes borne viral diseases, notably dengue, are increasingly reported in Cameroon with Aedes aegypti being a major vector. Data on insecticide resistance of this vector and underlying mechanisms needed for outbreak preparedness remain scarce in Cameroon. Here, we present the nationwide distribution of insecticide resistance in Ae. aegypti and investigate the potential resistance mechanisms involved. METHODS: Immature stages of Ae. aegypti were collected between March and July 2017 in 13 locations across Cameroon and reared until G1/G2/G3 generation. Larval, adult bioassays, and piperonyl butoxide (PBO) synergist assays were carried out according to World Health Organization guidelines. F1534C mutation was genotyped using allele specific polymerase chain reaction in field collected adults (Go) and the polymorphism of the sodium channel gene was assessed. The χ2 test was used to compare the mortality rate between bioassays with insecticides only and bioassays after preexposure to PBO synergist. RESULTS: Larval bioassay revealed that all the three populations tested with temephos were susceptible. Adult bioassays showed a good level of susceptibility toward both pyrethroids tested, 0.25% permethrin and 0.05% deltamethrin, with six out of 10 populations susceptible. However, two populations (Douala and Edéa) were resistant (deltamethrin [73.2-92.5% mortality], permethrin [2.6-76.3% mortality]). The resistance to 4% dichlorodiphenyltrichloroethane was observed in four out of 10 populations tested (16.8-87.1% mortality). Resistance was also reported to carbamates including 0.1% propoxur (60.8-87.1% mortality) and to 0.1% bendiocarb (82.9% mortality). All populations tested were fully susceptible to 1% fenitrothion. A partial recovery of susceptibility was observed in the pyrethroid resistant population of Douala after pre-exposed to PBO suggesting the implication of cytochrome P450 monoxygenases permethrin resistance. Genotyping and sequencing detected the F1534C kdr mutation in the two pyrethroid resistant locations of Edéa and Douala, with allelic frequency of 3.3% and 33.3% respectively. However, the high genetic diversity of the sodium channel gene supports the recent introduction of this mutation in Cameroon. CONCLUSIONS: This study revealed the contrasting resistance profiles to insecticides of Ae. aegypti populations in Cameroon suggesting that, instead of a unique nationwide control approach, a regionally adapted strategy will be needed to control this vector. The localised distribution of the F1534C kdr mutation supports this region-specific control strategy.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Camarões , Variação Genética , Haplótipos , Larva/efeitos dos fármacos , Mutação
16.
Parasit Vectors ; 13(1): 492, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977841

RESUMO

BACKGROUND: Invasive mosquito species, such as Aedes albopictus in Congo can affect the distribution of native species, changing the vector composition and pattern of disease transmission. Here, we comparatively establish the geographical distribution and larval habitat preference of Ae. aegypti and Ae. albopictus and the risk of arbovirus disease outbreaks using Stegomyia indices in the city of Brazzaville, the capital of the Republic of the Congo. METHODS: Human dwelling surveys of water-holding containers for immature stages of Aedes was carried out in December 2017 in Brazzaville through a random cluster sampling method. A total of 268 human dwellings distributed in 9 boroughs and 27 neighbourhoods were surveyed across the city. RESULTS: Overall, 455 potential larval habitats were surveyed. Both Ae. aegypti and Ae. albopictus were collected across the city with an overall high prevalence of Ae. aegypti (53.1%) compared to Ae. albopictus (46.9%). Geographical distribution analysis showed that Ae. aegypti was more abundant (mean = 6.6 ± 1.4) in neighbourhoods located in downtown, while the abundance of Ae. albopictus was low (mean = 3.5 ± 0.6) in suburbs. Peridomestic containers, especially discarded tanks, were the most strongly colonized productive larval habitat for both mosquito species with the prevalence of 56.4% and 53.1% for Ae. aegypti and Ae. albopictus, respectively. Globally, the house index (HI), Breteau index (BI) and container index (CI) were high for Ae. aegypti (26.6%, 38.4% and 22.6%) and Ae. albopictus (33.3%, 49.6% and 26.6%) compared to the transmission risk threshold (5%, 5% and 20%) established by the WHO/PAHO. Overall, pupae-based indices (the pupae index and the pupae per person index) were not significantly different between Ae. aegypti (273.4% and 23.2%) and Ae. albopictus (228.8% and 19.5%). CONCLUSIONS: The findings of this study suggest a high risk for transmission of arbovirus diseases in Brazzaville and call for an urgent need to implement vector control strategies against these vectors in the Republic of the Congo.


Assuntos
Aedes/fisiologia , Infecções por Arbovirus/transmissão , Arbovírus/fisiologia , Mosquitos Vetores/fisiologia , Aedes/classificação , Aedes/genética , Aedes/virologia , Distribuição Animal , Animais , Infecções por Arbovirus/virologia , Arbovírus/genética , Arbovírus/isolamento & purificação , Cidades , Congo , Humanos , Larva/classificação , Larva/genética , Larva/crescimento & desenvolvimento , Larva/virologia , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Mosquitos Vetores/virologia
17.
Pathogens ; 9(6)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575721

RESUMO

The dynamic of arbovirus vectors such as Aedes aegypti and Ae. albopictus remains poorly understood in large cities in central Africa. Here, we compared the larval ecology, geographical distribution and degree of infestation of Ae. aegypti and Ae. albopictus in Yaoundé, the capital city of Cameroon, and estimated their Stegomyia indices revealing a significant potential risk of arbovirus transmission. An entomological survey was conducted in April-May 2018 in a cluster of houses randomly selected. Each selected house was inspected, the number of inhabitants was recorded, and potential and positive containers for Aedes were characterized. Stegomyia and pupae-based indices were estimated. Overall, 447 houses and 954 containers were inspected comprising 10,801 immature stages of Aedes with 84.95% of Ae. albopictus and 15.05% of Ae. aegypti. Both species bred mainly in discarded tanks and used tyres, associated with turbid water and the presence of plant debris inside containers. Aedes albopictus was the most prevalent species in almost all neighbourhoods. The house index, Breteau index, and container index were higher for Ae. albopictus (38.26%, 71.81%, and 29.61%) compared to those of Ae. aegypti (25.73%, 40.93%, and 16.88%). These indices are high compared to the thresholds established by Pan American Health Organization and World Health Organization, which suggests a high potential risk of arbovirus transmission.

18.
PLoS One ; 15(6): e0234572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555588

RESUMO

The Asian mosquito, Aedes albopictus (Skuse), is an invasive mosquito which has become one of the most important vectors of dengue, Zika, and chikungunya viruses worldwide. This species was reported for the first time in Cameroon in early 2000s and became the dominant Aedes species in the urban areas in the southern part of Cameroon but remain poorly characterized. Here, we assessed the susceptibility profile of A. albopictus collected throughout Cameroon and investigated the potential resistance mechanisms involved. Immature stages of A. albopictus were collected between March and July 2017 in 15 locations across Cameroon and reared until G1/G2 generation. Larval, adult bioassays, and synergists [piperonyl butoxide (PBO) and diethyl maleate (DEM)] assays were carried out according to WHO recommendations. F1534C mutation was genotyped in field collected adults (Go) using allele specific PCR. All tested populations were susceptible to both larvicides, temephos and Bacillus thuringiensis israelensis (Bti), after larval bioassays. Adult bioassays revealed a high level of resistance of A. albopictus to 4% DDT with mortality rates ranging from 12.42% in Bafang to 75.04% in Kumba. The resistance was reported also in 0.05% deltamethrin, 0.25% permethrin, and 0.1% propoxur in some locations. A loss of susceptibility to 0.1% bendiocarb was found in one of three populations analysed. A full susceptibility to 1% fenitrothion were observed across the country. A full recovery or partial of susceptibility was observed in A. albopictus when pre-exposed to PBO or DEM and then to DDT and permethrin, respectively. The F1534C kdr mutation was not detected in A. albopictus. This study showed that the susceptibility profile of A. albopictus to insecticide vary according to the sampling location and insecticides used. These findings are useful to planning vector control program against arbovirus vectors in Cameroon and can be used as baseline data for further researches.


Assuntos
Aedes/fisiologia , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Doenças Transmitidas por Vetores/transmissão , Animais , Camarões , Larva/fisiologia
19.
PLoS Negl Trop Dis ; 14(3): e0008163, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203510

RESUMO

Zika virus (ZIKV) is a Flavivirus (Flaviviridae) transmitted to humans mainly by the bite of an infected Aedes mosquitoes. Aedes aegypti is the primary epidemic vector of ZIKV and Ae. albopictus, the secondary one. However, the epidemiological role of both Aedes species in Central Africa where Ae. albopictus was recently introduced is poorly characterized. Field-collected strains of Ae. aegypti and Ae. albopictus from different ecological settings in Central Africa were experimentally infected with a ZIKV strain isolated in West Africa. Mosquitoes were analysed at 14- and 21-days post-exposure. Both Ae. aegypti and Ae. albopictus were able to transmit ZIKV but with higher overall transmission efficiency for Ae. aegypti (57.9%) compared to Ae. albopictus (41.5%). In addition, disseminated infection and transmission rates for both Ae. aegypti and Ae. albopictus varied significantly according to the location where they were sampled from. We conclude that both Ae. aegypti and Ae. albopictus are able to transmit ZIKV and may intervene as active Zika vectors in Central Africa. These findings could contribute to a better understanding of the epidemiological transmission of ZIKV in Central Africa and develop suitable strategy to prevent major ZIKV outbreaks in this region.


Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Infecção por Zika virus/virologia , Zika virus/isolamento & purificação , Aedes/classificação , África Central , Animais , Suscetibilidade a Doenças , Feminino , Mapeamento Geográfico , Mosquitos Vetores/classificação , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão
20.
Infect Dis Poverty ; 9(1): 23, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32114983

RESUMO

BACKGROUND: In the Republic of Congo, with two massive outbreaks of chikungunya observed this decade, little is known about the insecticide resistance profile of the two major arbovirus vectors Aedes aegypti and Aedes albopictus. Here, we established the resistance profile of both species to insecticides and explored the resistance mechanisms to help Congo to better prepare for future outbreaks. METHODS: Immature stages of Ae. aegypti and Ae. albopictus were sampled in May 2017 in eight cities of the Republic of the Congo and reared to adult stage. Larval and adult bioassays, and synergist (piperonyl butoxide [PBO]) assays were carried out according to WHO guidelines. F1534C mutation was genotyped in field collected adults in both species and the polymorphism of the sodium channel gene assessed in Ae. aegypti. RESULTS: All tested populations were susceptible to temephos after larval bioassays. A high resistance level was observed to 4% DDT in both species countrywide (21.9-88.3% mortality). All but one population (Ae. aegypti from Ngo) exhibited resistance to type I pyrethroid, permethrin, but showed a full susceptibility to type II pyrethroid (deltamethrin) in almost all locations. Resistance was also reported to 1% propoxur in Ae. aegypti likewise in two Ae. albopictus populations (Owando and Ouesso), and the remaining were fully susceptible. All populations of both species were fully susceptible to 1% fenitrothion. A full recovery of susceptibility was observed in Ae. aegypti and Ae. albopictus when pre-exposed to PBO and then to propoxur and permethrin respectively. The F1534C kdr mutation was not detected in either species. The high genetic variability of the portion of sodium channel spanning the F1534C in Ae. aegypti further supported that knockdown resistance probably play no role in the permethrin resistance. CONCLUSIONS: Our study showed that both Aedes species were susceptible to organophosphates (temephos and fenitrothion), while for other insecticide classes tested the profile of resistance vary according to the population origin. These findings could help to implement better and efficient strategies to control these species in the Congo in the advent of future arbovirus outbreaks.


Assuntos
Aedes/efeitos dos fármacos , Febre de Chikungunya/prevenção & controle , Resistência a Inseticidas , Inseticidas/farmacologia , Piretrinas/farmacologia , Aedes/virologia , Animais , Congo , Variação Genética , Proteínas de Insetos/genética , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA