Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 5: 165, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24817871

RESUMO

Carpel margin meristems (CMMs), a pair of meristematic tissues present along the margins of two fused carpel primordia of Arabidopsis thaliana, are essential for the formation of ovules and the septum, two major internal structures of the gynoecium. Although a number of regulatory factors involved in shoot meristem activity are known to be required for the formation of these gynoecial structures, their direct roles in CMM development have yet to be addressed. Here we show that the CUP-SHAPED COTYLEDON genes CUC1 and CUC2, which are essential for shoot meristem initiation, are also required for formation and stable positioning of the CMMs. Early in CMM formation, CUC1 and CUC2 are also required for expression of the SHOOT MERISTEMLESS gene, a central regulator for stem cell maintenance in the shoot meristem. Moreover, plants carrying miR164-resistant forms of CUC1 and CUC2 resulted in extra CMM activity with altered positioning. Our results thus demonstrate that the two regulatory proteins controlling shoot meristem activity also play critical roles in elaboration of the female reproductive organ through the control of meristematic activity.

2.
Plant J ; 76(3): 446-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23941199

RESUMO

Upon hormonal signaling, ovules develop as lateral organs from the placenta. Ovule numbers ultimately determine the number of seeds that develop, and thereby contribute to the final seed yield in crop plants. We demonstrate here that CUP-SHAPED COTYLEDON 1 (CUC1), CUC2 and AINTEGUMENTA (ANT) have additive effects on ovule primordia formation. We show that expression of the CUC1 and CUC2 genes is required to redundantly regulate expression of PINFORMED1 (PIN1), which in turn is required for ovule primordia formation. Furthermore, our results suggest that the auxin response factor MONOPTEROS (MP/ARF5) may directly bind ANT, CUC1 and CUC2 and promote their transcription. Based on our findings, we propose an integrative model to describe the molecular mechanisms of the early stages of ovule development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/embriologia , Óvulo Vegetal/embriologia , Fatores de Transcrição/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fluorescência Verde , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA