RESUMO
Although combinatorial biosynthesis can dramatically expand the chemical structures of bioactive natural products to identify molecules with improved characteristics, progress in this direction has been hampered by the difficulty in isolating and characterizing the numerous produced compounds. This challenge could be overcome with improved designs that enable the analysis of the bioactivity of the produced metabolites ahead of the time-consuming isolation procedures. Herein, we showcase a structure-agnostic bioactivity-driven combinatorial biosynthesis workflow that introduces bioactivity assessment as a selection-driving force to guide iterative combinatorial biosynthesis rounds towards enzyme combinations with increasing bioactivity. We apply this approach to produce triterpenoids with potent bioactivity against PTP1B, a promising molecular target for diabetes and cancer treatment. We demonstrate that the bioactivity-guided workflow can expedite the combinatorial process by enabling the narrowing down of more than 1000 possible combinations to only five highly potent candidates. By focusing the isolation and structural elucidation effort on only these five strains, we reveal 20 structurally diverse triterpenoids, including four new compounds and a novel triterpenoid-anthranilic acid hybrid, as potent PTP1B inhibitors. This workflow expedites hit identification by combinatorial biosynthesis and is applicable to many other types of bioactive natural products, therefore providing a strategy for accelerated drug discovery.
RESUMO
Celastrol, a triterpenoid found in the root of the traditional medicinal plant Tripterygium wilfordii, is a potent anti-inflammatory and antiobesity agent. However, pharmacological exploitation of celastrol has been hindered by the limited accessibility of plant material, the co-existence of other toxic compounds in the same plant tissue, and the lack of an efficient chemical synthesis method. In this review, we highlight recent progress in elucidating celastrol biosynthesis and discuss how this knowledge can facilitate its scalable bioproduction using cell factories and its further development as an antiobesity and anti-inflammatory drug.
Assuntos
Fármacos Antiobesidade , Triterpenos Pentacíclicos , Triterpenos , Triterpenos/metabolismo , Tripterygium/metabolismo , Biotecnologia/métodosRESUMO
Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function. This transition involved subtle changes within the flavin binding pocket which gave rise to a visual photocycle consisting of light-inducible and dark-reversible flavin redox state transitions. In this photocycle, light first triggers flavin reduction from an initial dark-adapted resting state (FADox). The reduced state is the biologically active or 'lit' state, correlating with biological activity. Subsequently, the photoreduced flavin reoxidises back to the dark adapted or 'resting' state. Because the rate of reoxidation determines the lifetime of the signaling state, it significantly modulates biological activity. As a consequence of this redox photocycle Crys respond to both the wavelength and the intensity of light, but are in addition regulated by factors such as temperature, oxygen concentration, and cellular metabolites that alter rates of flavin reoxidation even independently of light. Mechanistically, flavin reduction is correlated with conformational change in the protein, which is thought to mediate biological activity through interaction with biological signaling partners. In addition, a second, entirely independent signaling mechanism arises from the cryptochrome photocycle in the form of reactive oxygen species (ROS). These are synthesized during flavin reoxidation, are known mediators of biotic and abiotic stress responses, and have been linked to Cry biological activity in plants and animals. Additional special properties arising from the cryptochrome photocycle include responsivity to electromagnetic fields and their applications in optogenetics. Finally, innovations in methodology such as the use of Nitrogen Vacancy (NV) diamond centers to follow cryptochrome magnetic field sensitivity in vivo are discussed, as well as the potential for a whole new technology of 'magneto-genetics' for future applications in synthetic biology and medicine.
RESUMO
Taxol is a potent drug used in various cancer treatments. Its complex structure has prompted extensive research into its biosynthesis. However, certain critical steps, such as the formation of the oxetane ring, which is essential for its activity, have remained unclear. Previous proposals suggested that oxetane formation follows the acetylation of taxadien-5α-ol. Here, we proposed that the oxetane ring is formed by cytochrome P450-mediated oxidation events that occur prior to C5 acetylation. To test this hypothesis, we analyzed the genomic and transcriptomic information for Taxus species to identify cytochrome P450 candidates and employed two independent systems, yeast (Saccharomyces cerevisiae) and plant (Nicotiana benthamiana), for their characterization. We revealed that a single enzyme, CYP725A4, catalyzes two successive epoxidation events, leading to the formation of the oxetane ring. We further showed that both taxa-4(5)-11(12)-diene (endotaxadiene) and taxa-4(20)-11(12)-diene (exotaxadiene) are precursors to the key intermediate, taxologenic oxetane, indicating the potential existence of multiple routes in the Taxol pathway. Thus, we unveiled a long-elusive step in Taxol biosynthesis.
Assuntos
Sistema Enzimático do Citocromo P-450 , Taxus , Sistema Enzimático do Citocromo P-450/metabolismo , Paclitaxel/metabolismo , Éteres Cíclicos , Catálise , Taxus/genética , Taxus/metabolismoRESUMO
Terpenoids are the most diverse group of specialized metabolites with numerous applications. Their biosynthesis is based on the five-carbon isoprene building block and, as a result, almost all terpenoids isolated to date are based on backbones that contain multiples of five carbon atoms. Intrigued by the discovery of an unusual bacterial terpenoid with a 16-carbon skeleton, here we investigate whether the biosynthesis of 16-carbon terpenoids is more widespread than this single example. We mine bacterial genomic information and identify potential C16 biosynthetic clusters in more than 700 sequenced genomes. We study selected clusters using a yeast synthetic biology platform and reveal that the encoded synthases produce at least 47 different noncanonical terpenoids. By thorough chemical analysis, we explain the structures of 13 C16 metabolites, most of which possess intricate highly strained bi- and tricyclic backbones. Our results unveil the existence of an extensive class of terpenoids in bacteria.
Assuntos
Bactérias , Terpenos , Terpenos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Saccharomyces cerevisiae/genética , Biologia Sintética/métodosRESUMO
Obesity is a major health risk still lacking effective pharmacological treatment. A potent anti-obesity agent, celastrol, has been identified in the roots of Tripterygium wilfordii. However, an efficient synthetic method is required to better explore its biological utility. Here we elucidate the 11 missing steps for the celastrol biosynthetic route to enable its de novo biosynthesis in yeast. First, we reveal the cytochrome P450 enzymes that catalyse the four oxidation steps that produce the key intermediate celastrogenic acid. Subsequently, we show that non-enzymatic decarboxylation-triggered activation of celastrogenic acid leads to a cascade of tandem catechol oxidation-driven double-bond extension events that generate the characteristic quinone methide moiety of celastrol. Using this acquired knowledge, we have developed a method for producing celastrol starting from table sugar. This work highlights the effectiveness of combining plant biochemistry with metabolic engineering and chemistry for the scalable synthesis of complex specialized metabolites.
Assuntos
Fármacos Antiobesidade , Triterpenos , Triterpenos/química , Triterpenos/metabolismo , Triterpenos/farmacologia , Fármacos Antiobesidade/farmacologia , Triterpenos Pentacíclicos , Sistema Enzimático do Citocromo P-450RESUMO
The chemical investigation of the organic extract of the red alga Laurencia majuscula collected from Hurghada reef in the Red Sea resulted in the isolation of five C15 acetogenins, including four tricyclic ones of the maneonene type (1-4) and a 5-membered one (5), 15 sesquiterpenes, including seven lauranes (6-12), one cuparane (13), one seco-laurane (14), one snyderane (15), two chamigranes (16, 17), two rearranged chamigranes (18, 19) and one aristolane (20), as well as a tricyclic diterpene (21) and a chlorinated fatty acid derivative (22). Among them, compounds 1-3, 5, 7, 8, 10, 11 and 14 are new natural products. The structures and the relative configurations of the isolated natural products have been established based on extensive analysis of their NMR and MS data, while the absolute configuration of maneonenes F (1) and G (2) was determined on the basis of single-crystal X-ray diffraction analysis. The anti-inflammatory activity of compounds 1, 2, 4-8, 10, 12-16, 18 and 20-22 was evaluated by measuring suppression of nitric oxide (NO) release in TLR4-activated RAW 264.7 macrophages in culture. All compounds, except 6, exhibited significant anti-inflammatory activity. Among them, metabolites 1, 4 and 18 did not exhibit any cytostatic activity at the tested concentrations. The most prominent anti-inflammatory activity, accompanied by absence of cytostatic activity at the same concentration, was exerted by compounds 5 and 18, with IC50 values of 3.69 µM and 3.55 µΜ, respectively.
Assuntos
Produtos Biológicos , Citostáticos , Laurencia , Sesquiterpenos , Laurencia/química , Estrutura Molecular , Oceano Índico , Anti-Inflamatórios/química , Sesquiterpenos/químicaRESUMO
In this paper we show that metabolic engineering in Cucurbita pepo hairy roots can be used to both effectively increase and modify cucurbitacins. Cucurbitacins are highly-oxygenated triterpenoids originally described in the Cucurbitaceae family, but have since been found in 15 taxonomically distant plant families. Cucurbitacin B, D, E and I are the most widespread amongst the Cucurbitaceae and they have both important biological and pharmacological activities. In this study C. pepo hairy roots were used as a platform to boost production and alter the structures of the afore mentioned cucurbitacins by metabolic engineering to potentially provide new or more desirable bioactivities. We report that the ability to induce cucurbitacin biosynthesis by basic Helix-Loop-Helix transcription factors is partially conserved within the Cucurbitaceae and therefore can potentially be used as a biotechnological tool to increase cucurbitacins in several genera of this family. Additionally, overexpression of a novel acyltransferase from cucurbitacin producing Iberis amara generates a hitherto undescribed acetylation at the C3-hydroxyl group of the cucurbitadienol backbone. While overexpression of the cytochromes P450 CsCYP88L2 and McCYP88L7 from Cucumis sativus and Momordica charantia (respectively), results in accumulation of new spectral feature as revealed by High resolution liquid chromatography mass spectroscopy analysis; the m/z of the new peak supports it might be a cucurbitacin hydroxylated at the C19 position in C. pepo hairy roots. Finally, this paper is a case study of how hairy roots can be used to metabolically engineer and introduce novel modifications in metabolic pathways that have not been fully elucidated.
RESUMO
Humankind relies on specialized metabolites for medicines, flavors, fragrances, and numerous other valuable biomaterials. However, the chemical space occupied by specialized metabolites, and, thus, their application potential, is limited because their biosynthesis is based on only a handful of building blocks. Engineering organisms to synthesize alternative building blocks will bypass this limitation and enable the sustainable production of molecules with non-canonical chemical structures, expanding the possible applications. Herein, we focus on isoprenoids and combine synthetic biology with protein engineering to construct yeast cells that synthesize 10 non-canonical isoprenoid building blocks with 16 carbon atoms. We identify suitable terpene synthases to convert these building blocks into C16 scaffolds and a cytochrome P450 to decorate the terpene scaffolds and produce different oxygenated compounds. Thus, we reconstruct the modular structure of terpene biosynthesis on 16-carbon backbones, synthesizing 28 different non-canonical terpenes, some of which have interesting odorant properties.
Assuntos
Carbono , Terpenos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia de Proteínas , Biologia Sintética , Terpenos/metabolismoRESUMO
The ginkgo tree (Ginkgo biloba) is considered a living fossil due to its 200 million year's history under morphological stasis. Its resilience is partly attributed to its unique set of specialized metabolites, in particular, ginkgolides and bilobalide, which are chemically complex terpene trilactones. Here, we use a gene cluster-guided mining approach in combination with co-expression analysis to reveal the primary steps in ginkgolide biosynthesis. We show that five multifunctional cytochrome P450s with atypical catalytic activities generate the tert-butyl group and one of the lactone rings, characteristic of all G. biloba trilactone terpenoids. The reactions include scarless C-C bond cleavage as well as carbon skeleton rearrangement (NIH shift) occurring on a previously unsuspected intermediate. The cytochrome P450s belong to CYP families that diversifies in pre-seed plants and gymnosperms, but are not preserved in angiosperms. Our work uncovers the early ginkgolide pathway and offers a glance into the biosynthesis of terpenoids of the Mesozoic Era.
Assuntos
Sistema Enzimático do Citocromo P-450 , Ginkgo biloba , Ginkgolídeos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Ginkgolídeos/química , Humanos , Lactonas/metabolismo , Família Multigênica , Extratos Vegetais/química , TerpenosRESUMO
Eukaryotic cells use G-protein coupled receptors to sense diverse signals, ranging from chemical compounds to light. Here, we exploit the remarkable sensing capacity of G-protein coupled receptors to construct yeast-based biosensors for real-life applications. To establish proof-of-concept, we focus on cannabinoids because of their neuromodulatory and immunomodulatory activities. We construct a CB2 receptor-based biosensor, optimize it to achieve high sensitivity and dynamic range, and prove its effectiveness in three applications of increasing difficulty. First, we screen a compound library to discover agonists and antagonists. Second, we analyze 54 plants to discover a new phytocannabinoid, dugesialactone. Finally, we develop a robust portable device, analyze body-fluid samples, and confidently detect designer drugs like JWH-018. These examples demonstrate the potential of yeast-based biosensors to enable diverse applications that can be implemented by non-specialists. Taking advantage of the extensive sensing repertoire of G-protein coupled receptors, this technology can be extended to detect numerous compounds.
Assuntos
Técnicas Biossensoriais , Canabinoides , Biotecnologia , Agonistas de Receptores de Canabinoides , Biblioteca Gênica , Saccharomyces cerevisiaeRESUMO
Restoring homeostasis following tissue damage requires a dynamic and tightly orchestrated sequence of molecular and cellular events that ensure repair and healing. It is well established that nutrition directly affects skin homeostasis, while malnutrition causes impaired tissue healing. In this study, we utilized fish sidestream-derived protein hydrolysates including fish collagen as dietary supplements, and investigated their effect on the skin repair process using a murine model of cutaneous wound healing. We explored potential differences in wound closure and histological morphology between diet groups, and analyzed the expression and production of factors that participate in different stages of the repair process. Dietary supplementation with fish sidestream-derived collagen alone (Collagen), or in combination with a protein hydrolysate derived from salmon heads (HSH), resulted in accelerated healing. Chemical analysis of the tested extracts revealed that Collagen had the highest protein content and that HSH contained the great amount of zinc, known to support immune responses. Indeed, tissues from mice fed with collagen-containing supplements exhibited an increase in the expression levels of chemokines, important for the recruitment of immune cells into the damaged wound region. Moreover, expression of a potent angiogenic factor, vascular endothelial growth factor-A (VEGF-A), was elevated followed by enhanced collagen deposition. Our findings suggest that a 5%-supplemented diet with marine collagen-enriched supplements promotes tissue repair in the model of cutaneous wound healing, proposing a novel health-promoting use of fish sidestreams.
Assuntos
Colágeno/efeitos dos fármacos , Hidrolisados de Proteína/farmacologia , Salmão , Cicatrização/efeitos dos fármacos , Animais , Quimiocinas/metabolismo , Suplementos Nutricionais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Hidrolisados de Proteína/administração & dosagemRESUMO
Current approaches for the production of high-value compounds in microorganisms mostly use the cytosol as a general reaction vessel. However, competing pathways and metabolic cross-talk frequently prevent efficient synthesis of target compounds in the cytosol. Eukaryotic cells control the complexity of their metabolism by harnessing organelles to insulate biochemical pathways. Inspired by this concept, herein we transform yeast peroxisomes into microfactories for geranyl diphosphate-derived compounds, focusing on monoterpenoids, monoterpene indole alkaloids, and cannabinoids. We introduce a complete mevalonate pathway in the peroxisome to convert acetyl-CoA to several commercially important monoterpenes and achieve up to 125-fold increase over cytosolic production. Furthermore, peroxisomal production improves subsequent decoration by cytochrome P450s, supporting efficient conversion of (S)-(-)-limonene to the menthol precursor trans-isopiperitenol. We also establish synthesis of 8-hydroxygeraniol, the precursor of monoterpene indole alkaloids, and cannabigerolic acid, the cannabinoid precursor. Our findings establish peroxisomal engineering as an efficient strategy for the production of isoprenoids.
Assuntos
Engenharia Metabólica/métodos , Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Difosfatos/metabolismo , Diterpenos/metabolismo , Microbiologia Industrial/métodos , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Redes e Vias Metabólicas/genética , Ácido Mevalônico/metabolismo , Peroxissomos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biologia Sintética/métodosRESUMO
Inflammation is part of the organism's response to deleterious stimuli, such as pathogens, damaged cells, or irritants. Macrophages orchestrate the inflammatory response obtaining different activation phenotypes broadly defined as M1 (pro-inflammatory) or M2 (homeostatic) phenotypes, which contribute to pathogen elimination or disease pathogenesis. The type and magnitude of the response of macrophages are shaped by endogenous and exogenous factors and can be affected by nutrients or therapeutic agents. Multiple studies have shown that natural products possess immunomodulatory properties and that marine algae contain products with such action. We have previously shown that disulfides isolated from Dictyopteris membranacea suppress nitric oxide (NO) production from activated macrophages, suggesting potential anti-inflammatory actions. In this study, we investigated the anti-inflammatory mechanism of action of bis(5-methylthio-3-oxo-undecyl) disulfide (1), 5-methylthio-1-(3-oxo-undecyl) disulfanylundecan-3-one (2) and 3-hexyl-4,5-dithiocycloheptanone (3). Our results showed that all three compounds inhibited M1 activation of macrophages by down regulating the production of pro-inflammatory cytokines TNFα, IL-6 and IL-12, suppressed the expression of the NO converting enzyme iNOS, and enhanced expression of the M2 activation markers Arginase1 and MRC1. Moreover, disulfides 1 and 2 suppressed the expression of glucose transporters GLUT1 and GLUT3, suggesting that compounds 1 and 2 may affect cell metabolism. We showed that this was due to AKT/MAPK/ERK signaling pathway modulation and specifically by elevated AKT phosphorylation and MAPK/ERK signal transduction reduction. Hence, disulfides 1-3 can be considered as potent candidates for the development of novel anti-inflammatory molecules with homeostatic properties.
Assuntos
Dissulfetos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Macrófagos/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Phaeophyceae/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Dissulfetos/química , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ativação de Macrófagos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células RAW 264.7RESUMO
BACKGROUND: Lysine specific demethylase 2B, KDM2B, regulates genes that participate in cellular development, morphogenesis, differentiation and metabolism as a component of the polycomb repressive complex 1 (PRC1). The CxxC finger of KDM2B is responsible for the DNA binding capacity of this epigenetic regulator, acting as a sampling mechanism across chromatin for gene repression OBJECTIVES: The molecular determinants of the CxxC-DNA interaction remain largely unknown, revealing a significant knowledge gap to be explored. Our goal was to elucidate the key residues of the CxxC domain that contribute to its function as well as to further elaborate on the significance of this domain in the KDM2B role METHODS: By using electrophoresis mobility swift assay, we identified structural elements of CxxC domain that participate in the DNA recognition. We created mouse embryonic fibroblasts overexpressing different truncated and point-mutated mouse KDM2B variants to examine the contribution of the KDM2B domains in replicative senescence bypass RESULTS: In this study, we show that only the CxxC finger is essential for the ability of mKDM2B to bypass replicative senescence in primary cells by ink4A-Arf-ink4B locus repression, and that this is mediated by specific interactions of residues R585, K608 and K616 with non-methylated CpG containing DNA CONCLUSIONS: These results provide new structural insights into the molecular interactions of CxxC and could serve as a stepping-stone for developing domain-specific inhibitors for KDM2B.
Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , DNA/química , Proteínas F-Box/química , Histona Desmetilases com o Domínio Jumonji/química , Fator 1 de Ribosilação do ADP/genética , Animais , Sítios de Ligação , Diferenciação Celular , Ilhas de CpG , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , DNA/genética , DNA/metabolismo , Embrião de Mamíferos , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Mutação Puntual , Cultura Primária de Células , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de SinaisRESUMO
BACKGROUND: Celastrol is a promising anti-obesity agent that acts as a sensitizer of the protein hormone leptin. Despite its potent activity, a sustainable source of celastrol and celastrol derivatives for further pharmacological studies is lacking. RESULTS: To elucidate the celastrol biosynthetic pathway and reconstruct it in Saccharomyces cerevisiae, we mined a root-transcriptome of Tripterygium wilfordii and identified four oxidosqualene cyclases and 49 cytochrome P450s as candidates to be involved in the early steps of celastrol biosynthesis. Using functional screening of the candidate genes in Nicotiana benthamiana, TwOSC4 was characterized as a novel oxidosqualene cyclase that produces friedelin, the presumed triterpenoid backbone of celastrol. In addition, three P450s (CYP712K1, CYP712K2, and CYP712K3) that act downstream of TwOSC4 were found to effectively oxidize friedelin and form the likely celastrol biosynthesis intermediates 29-hydroxy-friedelin and polpunonic acid. To facilitate production of friedelin, the yeast strain AM254 was constructed by deleting UBC7, which afforded a fivefold increase in friedelin titer. This platform was further expanded with CYP712K1 to produce polpunonic acid and a method for the facile extraction of products from the yeast culture medium, resulting in polpunonic acid titers of 1.4 mg/L. CONCLUSION: Our study elucidates the early steps of celastrol biosynthesis and paves the way for future biotechnological production of this pharmacologically promising compound in engineered yeast strains.
Assuntos
Fármacos Antiobesidade/metabolismo , Biotecnologia/métodos , Nicotiana/metabolismo , Tripterygium/metabolismo , Triterpenos/metabolismo , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Triterpenos Pentacíclicos , Saccharomyces cerevisiae/genética , Terpenos/metabolismoRESUMO
Thuwalallenes A-E (1-3, 5 and 8) and thuwalenynes A-C (4, 6, 7), new C15 acetogenins featuring uncommon ring systems, along with cis-maneonene D (9), thyrsiferol (10) and 23-acetyl-thyrsiferol (11) were isolated from the organic extract of a population of the red alga Laurencia sp., collected at Rose Reef off the village of Thuwal in the Red Sea waters of the Kingdom of Saudi Arabia. The structure elucidation of the isolated natural products was based on extensive analysis of their spectroscopic data. Compounds 1-6, 8, 10 and 11 were evaluated for their anti-inflammatory activity by quantifying nitric oxide (NO) release in response to TLR4 stimulation in macrophages. Besides compound 4 that did not exhibit any activity, all other tested metabolites inhibited NO production from activated macrophages. Among them, thyrsiferol (10) and 23-acetylthyrsiferol (11) displayed activity with IC50 values in the low nM scale without cytotoxicity.
Assuntos
Acetogeninas/química , Anti-Inflamatórios/química , Produtos Biológicos/química , Laurencia/química , Animais , Linhagem Celular , Oceano Índico , Camundongos , Células RAW 264.7 , Arábia SauditaRESUMO
Synthetic biology efforts for the production of valuable chemicals are frequently hindered by the structure and regulation of the native metabolic pathways of the chassis. This is particularly evident in the case of monoterpenoid production in Saccharomyces cerevisiae, where the canonical terpene precursor geranyl diphosphate is tightly coupled to the biosynthesis of isoprenoid compounds essential for yeast viability. Here, we establish a synthetic orthogonal monoterpenoid pathway based on an alternative precursor, neryl diphosphate. We identify structural determinants of isomeric substrate selectivity in monoterpene synthases and engineer five different enzymes to accept the alternative substrate with improved efficiency and specificity. We combine the engineered enzymes with dynamic regulation of metabolic flux to harness the potential of the orthogonal substrate and improve the production of industrially-relevant monoterpenes by several-fold compared to the canonical pathway. This approach highlights the introduction of synthetic metabolism as an effective strategy for high-value compound production.
Assuntos
Liases Intramoleculares/genética , Engenharia Metabólica , Monoterpenos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Vias Biossintéticas/genética , Liases Intramoleculares/metabolismo , Isomerismo , Mutagênese Sítio-Dirigida , Fosfatos de Poli-Isoprenil/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/genética , Biologia SintéticaRESUMO
Diatoms are among the most productive and ecologically important groups of microalgae in contemporary oceans. Due to their distinctive metabolic and physiological features, they offer exciting opportunities for a broad range of commercial and industrial applications. One such feature is their ability to synthesize a wide diversity of isoprenoid compounds. However, limited understanding of how these molecules are synthesized have until recently hindered their exploitation. Following comprehensive genomic and transcriptomic analysis of various diatom species, the biosynthetic mechanisms and regulation of the different branches of the pathway are now beginning to be elucidated. In this review, we provide a summary of the recent advances in understanding diatom isoprenoid synthesis and discuss the exploitation potential of diatoms as chassis for high-value isoprenoid synthesis.