Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5397, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926498

RESUMO

Phage predation is generally assumed to reduce microbial proliferation while not contributing to the spread of antibiotic resistance. However, this assumption does not consider the effect of phage predation on the spatial organization of different microbial populations. Here, we show that phage predation can increase the spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth by reshaping spatial organization. Using two strains of the bacterium Escherichia coli, we demonstrate that phage predation slows the spatial segregation of the strains during growth. This increases the number of cell-cell contacts and the extent of conjugation-mediated plasmid transfer between them. The underlying mechanism is that phage predation shifts the location of fastest growth from the biomass periphery to the interior where cells are densely packed and aligned closer to parallel with each other. This creates straighter interfaces between the strains that are less likely to merge together during growth, consequently slowing the spatial segregation of the strains and enhancing plasmid transfer between them. Our results have implications for the design and application of phage therapy and reveal a mechanism for how microbial functions that are deleterious to human and environmental health can proliferate in the absence of positive selection.


Assuntos
Bacteriófagos , Escherichia coli , Plasmídeos , Plasmídeos/genética , Plasmídeos/metabolismo , Escherichia coli/virologia , Escherichia coli/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Conjugação Genética
2.
Synth Biol (Oxf) ; 8(1): ysad013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601821

RESUMO

Maximizing protein secretion is an important target in the design of engineered living systems. In this paper, we characterize a trade-off between cell growth and per-cell protein secretion in the curli biofilm secretion system of Escherichia coli Nissle 1917. Initial characterization using 24-h continuous growth and protein production monitoring confirms decreased growth rates at high induction, leading to a local maximum in total protein production at intermediate induction. Propidium iodide (PI) staining at the endpoint indicates that cellular death is a dominant cause of growth reduction. Assaying variants with combinatorial constructs of inner and outer membrane secretion tags, we find that diminished growth at high production is specific to secretory variants associated with periplasmic stress mediated by outer membrane secretion and periplasmic accumulation of protein containing the outer membrane transport tag. RNA sequencing experiments indicate upregulation of known periplasmic stress response genes in the highly secreting variant, further implicating periplasmic stress in the growth-secretion trade-off. Overall, these results motivate additional strategies for optimizing total protein production and longevity of secretory engineered living systems Graphical Abstract.

3.
Adv Mater ; 35(6): e2207483, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36444840

RESUMO

Living materials with embedded microorganisms can genetically encode attractive sensing, self-repairing, and responsive functionalities for applications in medicine, robotics, and infrastructure. While the synthetic toolbox for genetically engineering bacteria continues to expand, technologies to shape bacteria-laden living materials into complex 3D geometries are still rather limited. Here, it is shown that bacteria-laden hydrogels can be shaped into living materials with unusual architectures and functionalities using readily available light-based printing techniques. Bioluminescent and melanin-producing bacteria are used to create complex materials with autonomous chemical-sensing capabilities by harnessing the metabolic activity of wild-type and engineered microorganisms. The shaping freedom offered by printing technologies and the rich biochemical diversity available in bacteria provides ample design space for the creation and exploration of complex living materials with programmable functionalities for a broad range of applications.


Assuntos
Bioimpressão , Impressão Tridimensional , Bactérias/genética , Hidrogéis/química , Bioimpressão/métodos , Engenharia
4.
Nat Commun ; 12(1): 6600, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815411

RESUMO

Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional architectures under ambient conditions. The emerging field of living materials has leveraged microbial engineering to produce materials for various applications but building 3D structures in arbitrary patterns and shapes has been a major challenge. Here we set out to develop a bioink, termed as "microbial ink" that is produced entirely from genetically engineered microbial cells, programmed to perform a bottom-up, hierarchical self-assembly of protein monomers into nanofibers, and further into nanofiber networks that comprise extrudable hydrogels. We further demonstrate the 3D printing of functional living materials by embedding programmed Escherichia coli (E. coli) cells and nanofibers into microbial ink, which can sequester toxic moieties, release biologics, and regulate its own cell growth through the chemical induction of rationally designed genetic circuits. In this work, we present the advanced capabilities of nanobiotechnology and living materials technology to 3D-print functional living architectures.


Assuntos
Tinta , Nanofibras/química , Impressão Tridimensional , Engenharia de Proteínas , Bactérias/genética , Bactérias/metabolismo , Materiais Biocompatíveis/química , Bioimpressão/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética , Hidrogéis/química , Reologia , Engenharia Tecidual
5.
Adv Sci (Weinh) ; 8(11): 2004699, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34141524

RESUMO

Bacterial cellulose (BC) has excellent material properties and can be produced sustainably through simple bacterial culture, but BC-producing bacteria lack the extensive genetic toolkits of model organisms such as Escherichia coli (E. coli). Here, a simple approach is reported for producing highly programmable BC materials through incorporation of engineered E. coli. The acetic acid bacterium Gluconacetobacter hansenii is cocultured with engineered E. coli in droplets of glucose-rich media to produce robust cellulose capsules, which are then colonized by the E. coli upon transfer to selective lysogeny broth media. It is shown that the encapsulated E. coli can produce engineered protein nanofibers within the cellulose matrix, yielding hybrid capsules capable of sequestering specific biomolecules from the environment and enzymatic catalysis. Furthermore, capsules are produced which can alter their own bulk physical properties through enzyme-induced biomineralization. This novel system uses a simple fabrication process, based on the autonomous activity of two bacteria, to significantly expand the functionality of BC-based living materials.


Assuntos
Celulose/biossíntese , Escherichia coli/metabolismo , Bioengenharia , Cápsulas , Técnicas de Cocultura , Meios de Cultura , Gluconacetobacter/metabolismo , Nanofibras/química
6.
ACS Synth Biol ; 10(1): 94-106, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33301298

RESUMO

Escherichia coli Nissle 1917 (EcN) is a probiotic bacterium, commonly employed to treat certain gastrointestinal disorders. It is fast emerging as an important target for the development of therapeutic engineered bacteria, benefiting from the wealth of knowledge of E. coli biology and ease of manipulation. Bacterial synthetic biology projects commonly utilize engineered plasmid vectors, which are simple to engineer and can reliably achieve high levels of protein expression. However, plasmids typically require antibiotics for maintenance, and the administration of an antibiotic is often incompatible with in vivo experimentation or treatment. EcN natively contains plasmids pMUT1 and pMUT2, which have no known function but are stable within the bacteria. Here, we describe the development of the pMUT plasmids into a robust platform for engineering EcN for in vivo experimentation, alongside a CRISPR-Cas9 system to remove the native plasmids. We systematically engineered both pMUT plasmids to contain selection markers, fluorescent markers, temperature sensitive expression, and curli secretion systems to export a customizable functional material into the extracellular space. We then demonstrate that the engineered plasmids were maintained in bacteria as the engineered bacteria pass through the mouse GI tract without selection, and that the secretion system remains functional, exporting functionalized curli proteins into the gut. Our plasmid system presents a platform for the rapid development of therapeutic EcN bacteria.


Assuntos
Escherichia coli/genética , Plasmídeos/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas/genética , Trato Gastrointestinal/metabolismo , Edição de Genes , Expressão Gênica , Engenharia Genética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Regiões Promotoras Genéticas , Temperatura
7.
Synth Biol (Oxf) ; 5(1): ysaa001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161816

RESUMO

Standardized type IIS DNA assembly methods are becoming essential for biological engineering and research. These methods are becoming widespread and more accessible due to the proposition of a 'common syntax' that enables higher interoperability between DNA libraries. Currently, Golden Gate (GG)-based assembly systems, originally implemented in host-specific vectors, are being made compatible with multiple organisms. We have recently developed the GG-based Loop assembly system for plants, which uses a small library and an intuitive strategy for hierarchical fabrication of large DNA constructs (>30 kb). Here, we describe 'universal Loop' (uLoop) assembly, a system based on Loop assembly for use in potentially any organism of choice. This design permits the use of a compact number of plasmids (two sets of four odd and even vectors), which are utilized repeatedly in alternating steps. The elements required for transformation/maintenance in target organisms are also assembled as standardized parts, enabling customization of host-specific plasmids. Decoupling of the Loop assembly logic from the host-specific propagation elements enables universal DNA assembly that retains high efficiency regardless of the final host. As a proof-of-concept, we show the engineering of multigene expression vectors in diatoms, yeast, plants and bacteria. These resources are available through the OpenMTA for unrestricted sharing and open access.

8.
MRS Commun ; 9(2): 441-455, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31750012

RESUMO

Protein-based materials have emerged as a powerful instrument for a new generation of biological materials, with many chemical and mechanical capabilities. Through the manipulation of DNA, researchers can design proteins at the molecular level, engineering a vast array of structural building blocks. However, our capability to rationally design and predict the properties of such materials is limited by the vastness of possible sequence space. Directed evolution has emerged as a powerful tool to improve biological systems through mutation and selection, presenting another avenue to produce novel protein materials. In this prospective review, we discuss the application of directed evolution for protein materials, reviewing current examples and developments that could facilitate the evolution of protein for material applications.

9.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31003987

RESUMO

Curli are amyloid proteins that are assembled into extracellular polymeric fibers by bacteria during biofilm formation. The beta-sheet-rich protein CsgA, the primary structural component of the fibers, is secreted through dedicated machinery and self-assembles into cell-anchored fibers many times longer than the cell. Here, we have developed an in situ fluorescence assay for curli production that exploits the fluorescent properties of Congo red (CR) dye when bound to amyloid, allowing for rapid and robust curli quantification. We initially evaluated three amyloid-binding dyes for the fluorescent detection of curli in bacterial culture and found only Congo red compatible with in situ quantification. We further characterized the fluorescent properties of the dye directly in bacterial culture and calibrated the fluorescence using purified CsgA protein. We then used the Congo red assay to rapidly develop and characterize inducible curli-producing constructs in both an MC4100-derived lab strain of Escherichia coli and a derivative of the probiotic strain E. coli Nissle. This technique can be used to evaluate curli production in a minimally invasive manner using a range of equipment, simplifying curli quantification and the development of novel engineered curli systems.IMPORTANCE Curli are proteins produced by many bacteria as a structural component of biofilms, and they have recently emerged as a platform for fabrication of biological materials. Curli fibers are very robust and resistant to degradation, and the curli subunits can tolerate many protein fusions, facilitating the biosynthesis of novel functional materials. A serious bottleneck in the development of more sophisticated engineered curli systems is the rapid quantification of curli production by the bacteria. In this work we address this issue by developing a technique to monitor curli production directly in bacterial cultures, allowing for rapid curli quantification in a manner compatible with many powerful high-throughput techniques that can be used to engineer complex biological material systems.


Assuntos
Proteínas Amiloidogênicas/química , Vermelho Congo/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Amiloidogênicas/metabolismo , Biofilmes/crescimento & desenvolvimento , Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fluorescência , Coloração e Rotulagem
10.
J R Soc Interface ; 15(146)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232243

RESUMO

Dense bacterial communities, known as biofilms, can have functional spatial organization driven by self-organizing chemical and physical interactions between cells, and their environment. In this work, we investigated intercellular adhesion, a pervasive property of bacteria in biofilms, to identify effects on the internal structure of bacterial colonies. We expressed the self-recognizing ag43 adhesin protein in Escherichia coli to generate adhesion between cells, which caused aggregation in liquid culture and altered microcolony morphology on solid media. We combined the adhesive phenotype with an artificial colony patterning system based on plasmid segregation, which marked clonal lineage domains in colonies grown from single cells. Engineered E. coli were grown to colonies containing domains with varying adhesive properties, and investigated with microscopy, image processing and computational modelling techniques. We found that intercellular adhesion elongated the fractal-like boundary between cell lineages only when both domains within the colony were adhesive, by increasing the rotational motion during colony growth. Our work demonstrates that adhesive intercellular interactions can have significant effects on the spatial organization of bacterial populations, which can be exploited for biofilm engineering. Furthermore, our approach provides a robust platform to study the influence of intercellular interactions on spatial structure in bacterial populations.


Assuntos
Adesinas Bacterianas/fisiologia , Aderência Bacteriana , Biofilmes , Algoritmos , Adesão Celular , Simulação por Computador , Escherichia coli , Proteínas de Escherichia coli/fisiologia , Fractais , Modelos Biológicos , Movimento (Física) , Fenótipo , Plasmídeos
11.
ACS Synth Biol ; 6(2): 256-265, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27794593

RESUMO

Morphogenetic engineering is an emerging field that explores the design and implementation of self-organized patterns, morphologies, and architectures in systems composed of multiple agents such as cells and swarm robots. Synthetic biology, on the other hand, aims to develop tools and formalisms that increase reproducibility, tractability, and efficiency in the engineering of biological systems. We seek to apply synthetic biology approaches to the engineering of morphologies in multicellular systems. Here, we describe the engineering of two mechanisms, symmetry-breaking and domain-specific cell regulation, as elementary functions for the prototyping of morphogenetic instructions in bacterial colonies. The former represents an artificial patterning mechanism based on plasmid segregation while the latter plays the role of artificial cell differentiation by spatial colocalization of ubiquitous and segregated components. This separation of patterning from actuation facilitates the design-build-test-improve engineering cycle. We created computational modules for CellModeller representing these basic functions and used it to guide the design process and explore the design space in silico. We applied these tools to encode spatially structured functions such as metabolic complementation, RNAPT7 gene expression, and CRISPRi/Cas9 regulation. Finally, as a proof of concept, we used CRISPRi/Cas technology to regulate cell growth by controlling methionine synthesis. These mechanisms start from single cells enabling the study of morphogenetic principles and the engineering of novel population scale structures from the bottom up.


Assuntos
Bactérias/genética , Sistemas CRISPR-Cas/genética , Simulação por Computador , Expressão Gênica/genética , Engenharia Genética/métodos , Metionina/genética , RNA/genética , Reprodutibilidade dos Testes , Biologia Sintética/métodos
12.
ACS Synth Biol ; 2(12): 705-14, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23688051

RESUMO

As a model system to study physical interactions in multicellular systems, we used layers of Escherichia coli cells, which exhibit little or no intrinsic coordination of growth. This system effectively isolates the effects of cell shape, growth, and division on spatial self-organization. Tracking the development of fluorescence-labeled cellular domains, we observed the emergence of striking fractal patterns with jagged, self-similar shapes. We then used a large-scale, cellular biophysical model to show that local instabilities due to polar cell-shape, repeatedly propagated by uniaxial growth and division, are responsible for generating this fractal geometry. Confirming this result, a mutant of E. coli with spherical shape forms smooth, nonfractal cellular domains. These results demonstrate that even populations of relatively simple bacterial cells can possess emergent properties due to purely physical interactions. Therefore, accurate physico-genetic models of cell growth will be essential for the design and understanding of genetically programmed multicellular systems.


Assuntos
Biofísica , Polaridade Celular/fisiologia , Fractais , Modelos Biológicos , Biofilmes , Escherichia coli
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA