Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 949: 175208, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097015

RESUMO

Sudden cardiac arrest (SCA) is a global health concern, imposing a substantial mortality burden. However, the understanding of the impact of various extreme temperature events, when accounting for the effect of daily average temperature on SCA, remains incomplete. Additionally, the assessment of SCA mortality burden associated with temperatures from an individual-level design is limited. This nationwide case-crossover study collected individual SCA death records across all (2844) county-level administrative units in the Chinese Mainland from 2013 to 2019. Four definitions for hot nights and ten for both cold spells and heatwaves were established using various temperature thresholds and durations. Conditional logistic regression models combined with distributed lag nonlinear models were employed to estimate the cumulative exposure-response relationships. Based on 887,662 SCA decedents, this analysis found that both hot nights [odds ratio (OR): 1.28; attributable fraction (AF): 1.32 %] and heatwaves (OR: 1.40; AF: 1.29 %) exhibited significant added effects on SCA mortality independent of daily average temperatures, while cold spells were not associated with an elevated SCA risk after accounting for effects of temperatures. Cold temperatures [below the minimum mortality temperature (MMT)] accounted for a larger mortality burden than high temperatures (above the MMT) [AF: 12.2 % vs. 1.5 %]. Higher temperature-related mortality risks and burdens were observed in patients who experienced out-of-hospital cardiac arrest compared to those with in-hospital cardiac arrest. This nationwide study presents the most compelling and comprehensive evidence of the elevated mortality risk and burden of SCA associated with extreme temperature events and ambient temperatures amid global warming.


Assuntos
Temperatura Baixa , Estudos Cross-Over , Morte Súbita Cardíaca , Humanos , Morte Súbita Cardíaca/epidemiologia , China/epidemiologia , Temperatura Baixa/efeitos adversos , Temperatura Alta/efeitos adversos , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Adulto , Fatores de Risco
3.
EBioMedicine ; 107: 105270, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137570

RESUMO

BACKGROUND: Short-term exposure to particulate matter air pollution has been associated with the exacerbations of COPD, but its association with COPD mortality was not fully elucidated. We aimed to assess the association between short-term particulate matter exposure and the risk of COPD mortality in China using individual-level data. METHODS: We derived 2.26 million COPD deaths from a national death registry database in Chinese mainland between 2013 and 2019. Exposures to fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) were assessed by satellite-based models of a 1 × 1 km resolution and assigned to each individual based on residential address. The associations of PM2.5 and PM2.5-10 with COPD mortality were examined using a time-stratified case-crossover design and conditional logistic regressions with distributed lag models. We further conducted stratified analyses by age, sex, education level, and season. FINDINGS: Short-term exposures to both PM2.5 and PM2.5-10 were associated with increased risks of COPD mortality. These associations appeared and peaked on the concurrent day, attenuated and became nonsignificant after 5 or 7 days, respectively. The exposure-response curves were approximately linear without discernible thresholds. An interquartile range increase in PM2.5 and PM2.5-10 concentrations was associated with 4.23% (95% CI: 3.75%, 4.72%) and 2.67% (95% CI: 2.18%, 3.16%) higher risks of COPD mortality over lag 0-7 d, respectively. The associations of PM2.5 and PM2.5-10 attenuated slightly but were still significant in the mutual-adjustment models. A larger association of PM2.5-10 was observed in the warm season. INTERPRETATION: This individual-level, nationwide, case-crossover study suggests that short-term exposure to PM2.5 and PM2.5-10 might act as one of the environmental risk factors for COPD mortality. FUNDING: This study is supported by the National Key Research and Development Program of China (2023YFC3708304 and 2022YFC3702701), the National Natural Science Foundation of China (82304090 and 82030103), the 3-year Action Plan for Strengthening the Construction of the Public Health System in Shanghai (GWVI-11.2-YQ31), and the Science and Technology Commission of Shanghai Municipality (21TQ015).

4.
Sci Total Environ ; : 175219, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097020

RESUMO

PURPOSE: To determine the impact of PM2.5 exposure in old age and its interactive effect with smoking on incident diabetes. METHODS: A total of 2766 participants aged ≥60 years in China were interviewed at baseline for disease risk factors in 2001-03 and were then followed up for 10 years to document incident diabetes. They were assessed for daily PM2.5 exposure in 2005. Multivariate Cox regression models were used to examine the association of PM2.5 exposure with incident diabetes and interactive effect between PM2.5 and smoking on incident diabetes. RESULTS: During the cohort follow-up, 176 participants developed diabetes. The incidence of diabetes increased with PM2.5 exposure; the multiple-adjusted hazard ratio (HR) of diabetes was 2.27 (95 % CI 1.36-3.77) in participants with PM2.5 at ≥62.0 µg/m3 compared to those with <62.0 µg/m3. There was a significant interaction effect of PM2.5 with smoking on increased risk of diabetes. The adjusted HR for participants exposed to PM2.5 levels ≥62.0 µg/m3 who smoked was 4.39 (95 % CI 1.72-11.21), while for non-smokers it was 1.65 (95 % CI 0.88-3.09), compared to those with <62.0 µg/m3. CONCLUSIONS: Exposure to PM2.5 in old age was associated with an increased incidence of diabetes and smoking enhanced the impact of PM2.5 on diabetic risk. These findings underscore the urgent need for air quality improvement measures and smoking cessation programs to mitigate the risk of diabetes in aging populations.

5.
Lancet Reg Health West Pac ; 48: 101112, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978965

RESUMO

Background: Urban living is linked to better health outcomes due to a combination of enhanced access to healthcare, transportation, and human development opportunities. However, spatial inequalities lead to disparities, resulting in urban health advantages and penalties. Understanding the relationship between health and urban development is needed to generate empirical evidence in promoting healthy aging populations. This study provides a comparative analysis using epidemiological evidence across diverse major Chinese cities, examining how their unique urban development trajectories over time have impacted the health of their aging residents. Methods: We tracked changes in air pollution (NO2, PM2.5, O3), green space (measured by NDVI), road infrastructure (ring road areas), and nighttime lighting over 20 years in six major cities in China. We followed a longitudinal cohort of 4992 elderly participants (average age 87.8 years) over 16,824 person-years. We employed Cox proportional hazard regression to assess longevity, assessing 14 variables, including age, sex, ethnicity, marital status, residence, household income, occupation, education, smoking, alcohol consumption, exercise, and points of interest (POI) count of medicine-related facilities, sports, and leisure service-related places, and scenic spots within a 5 km-radius buffer. Findings: Geographic proximity to points of interest significantly improves survival. Elderly living in proximity of the POI-rich areas had a 34.6%-35.6% lower mortality risk compared to those in POI-poor areas, for the highest compared to the lowest quartile. However, POI-rich areas had higher air pollution levels, including PM2.5 and NO2, which was associated with a 21% and 10% increase in mortality risk for increase of 10 µg/m3, respectively. The benefits of urban living had higher effect estimates in monocentric cities, with clearly defined central areas, compared to polycentric layouts, with multiple satellite city centers. Interpretation: Spatial inequalities create urban health advantages for some and penalties for others. Proximity to public facilities and economic activities is associated with health benefits, and may counterbalance the negative health impacts of lower green space and higher air pollution. Our empirical evidence show optimal health gains for age-friendly urban environments come from a balance of infrastructure, points of interest, green spaces, and low air pollution. Funding: Natural Science Foundation of Beijing (IS23105), National Natural Science Foundation of China (82250610230, 72061137004), World Health Organization (2024/1463606-0), Research Fund Vanke School of Public Health Tsinghua University (2024JC002), Beijing TaiKang YiCai Public Welfare Foundation, National Key R&D Program of China (2018YFC2000400).

6.
J Hazard Mater ; 476: 135119, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986405

RESUMO

Increasing evidence has supported that oxidative potential (OP) serves as a crucial indicator of health risk of exposure to PM2.5 over mass concentration. However, there is a lack of comparative studies across multiple cities, particularly on a fine temporal scale. In this study, we aim to investigate daily variation of ambient PM2.5 OP through simultaneous samplings in six Chinese cities for one year. Results showed that more than 60 % of the sampling days exhibited non-zero ranking difference between volume-normalized oxidative potential (OPv) and mass concentration among the six cities. Key components contributing to OPv inculde Mn, NO3-, and K+, followed by Ca2+, Al, SO42-, Cl-, Fe, and NH4+. Based on these chemical components, we developed a stepwise multivariable linear regression model (R2: 0.71) for OPv prediction. The performance of the model is comparable to both species- and sources-based ones in the literature. These findings suggest that a relatively lower daily-averaged mass concentration of PM2.5 does not necessarily indicate a lower oxidative risk. Future studies and policy developments on health benefits should also consider OPv rather than mass concentration alone. Priority could be given to sources/species that contribute significantly to oxidative potential of ambient PM2.5. SYNOPSIS: This study highlights inclusion of oxidative potential as a complementary metric for air pollution assessment and control.

7.
Ecotoxicol Environ Saf ; 282: 116687, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981395

RESUMO

The changing climate poses a growing challenge to the population health. The objective of this study was to assess the association between ambient temperature and cause-specific mortality in Suzhou. Based on the non-accidental mortality data collected during 2008-2022 in Suzhou, China, this study utilized an individual-level case-crossover design to evaluate the associations of temperature with cause-specific mortality. We applied a distributed lag nonlinear model with a maximum lag of 14 days to account for lag effects. Mortality risk due to extreme cold (<2.5th percentile) and extreme heat (>97.5th percentile) was analyzed. A total of 634,530 non-accidental deaths were analyzed in this study. An inverse J-shaped exposure-response relationship was observed between ambient temperature and non-accidental mortality, with the minimum mortality temperature (MMT) at 29.1℃. The relative risk (RR) of mortality associated with extreme cold (2.5th percentile) was 1.37 [95 % confidence interval (CI): 1.30, 1.44], higher than estimate of 1.09 (95 %CI: 1.07, 1.11) for extreme heat (97.5th percentile) relative to the MMT. Heat effect lasted for 2-3 days, while cold effect could persist for almost 14 days. Higher mortality risk estimates were observed for cardiorespiratory deaths compared to total deaths, with statistically significant between-group differences. Consequently, this study provides first-hand evidence on the associations between ambient temperatures and mortality risks from various causes, which could help local government and policy-makers in designing targeted strategies and public health measures against the menace of climate change.


Assuntos
Estudos Cross-Over , China/epidemiologia , Humanos , Feminino , Masculino , Mortalidade/tendências , Pessoa de Meia-Idade , Mudança Climática , Adulto , Temperatura , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Idoso , Causas de Morte , Adulto Jovem , Calor Extremo/efeitos adversos
8.
J Hazard Mater ; 476: 135096, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996677

RESUMO

PM2.5 exposure has been found to cause gut dysbiosis and impair glucose homeostasis in human and animals, yet their underlying biological connection remain unclear. In the present study, we aim to investigate the biological significance of gut microbiota in PM2.5-induced glucose metabolic abnormalities. Our results showed that microbiota depletion by antibiotics treatment significantly alleviated PM2.5-induced glucose intolerance and insulin resistance, as indicated by the intraperitoneal glucose tolerance test, glucose-induced insulin secretion, insulin tolerance test, insulin-induced phosphorylation levels of Akt and GSK-3ß in insulin sensitive tissues. In addition, faecal microbiota transplantation (FMT) from PM2.5-exposed donor mice successfully remodeled the glucose metabolism abnormalities in recipient mice, while the transplantation of autoclaved faecal materials did not. Faecal microbiota analysis demonstrated that the composition and alpha diversity of the gut bacterial community were altered by PM2.5 exposure and in FMT recipient mice. Furthermore, short-chain fatty acids levels analysis showed that the circulating acetate was significantly decreased in PM2.5-exposed donor and FMT recipient mice, and supplementation of sodium acetate for 3 months successfully improved the glucose metabolism abnormalities induced by PM2.5 exposure. These results indicate that manipulating gut microbiota or its metabolites could be a potential strategy for preventing the adverse health effects of ambient PM2.5.


Assuntos
Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Resistência à Insulina , Material Particulado , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Material Particulado/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Transplante de Microbiota Fecal , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Poluentes Atmosféricos/toxicidade , Camundongos , Antibacterianos/farmacologia , Disbiose/induzido quimicamente , Disbiose/metabolismo , Fezes/microbiologia , Acetato de Sódio/farmacologia , Teste de Tolerância a Glucose , Insulina/metabolismo , Insulina/sangue
9.
Lancet Planet Health ; 8(7): e452-e462, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38969473

RESUMO

BACKGROUND: Wildfire activity is an important source of tropospheric ozone (O3) pollution. However, no study to date has systematically examined the associations of wildfire-related O3 exposure with mortality globally. METHODS: We did a multicountry two-stage time series analysis. From the Multi-City Multi-Country (MCC) Collaborative Research Network, data on daily all-cause, cardiovascular, and respiratory deaths were obtained from 749 locations in 43 countries or areas, representing overlapping periods from Jan 1, 2000, to Dec 31, 2016. We estimated the daily concentration of wildfire-related O3 in study locations using a chemical transport model, and then calibrated and downscaled O3 estimates to a resolution of 0·25°â€ˆ× 0·25° (approximately 28 km2 at the equator). Using a random-effects meta-analysis, we examined the associations of short-term wildfire-related O3 exposure (lag period of 0-2 days) with daily mortality, first at the location level and then pooled at the country, regional, and global levels. Annual excess mortality fraction in each location attributable to wildfire-related O3 was calculated with pooled effect estimates and used to obtain excess mortality fractions at country, regional, and global levels. FINDINGS: Between 2000 and 2016, the highest maximum daily wildfire-related O3 concentrations (≥30 µg/m3) were observed in locations in South America, central America, and southeastern Asia, and the country of South Africa. Across all locations, an increase of 1 µg/m3 in the mean daily concentration of wildfire-related O3 during lag 0-2 days was associated with increases of 0·55% (95% CI 0·29 to 0·80) in daily all-cause mortality, 0·44% (-0·10 to 0·99) in daily cardiovascular mortality, and 0·82% (0·18 to 1·47) in daily respiratory mortality. The associations of daily mortality rates with wildfire-related O3 exposure showed substantial geographical heterogeneity at the country and regional levels. Across all locations, estimated annual excess mortality fractions of 0·58% (95% CI 0·31 to 0·85; 31 606 deaths [95% CI 17 038 to 46 027]) for all-cause mortality, 0·41% (-0·10 to 0·91; 5249 [-1244 to 11 620]) for cardiovascular mortality, and 0·86% (0·18 to 1·51; 4657 [999 to 8206]) for respiratory mortality were attributable to short-term exposure to wildfire-related O3. INTERPRETATION: In this study, we observed an increase in all-cause and respiratory mortality associated with short-term wildfire-related O3 exposure. Effective risk and smoke management strategies should be implemented to protect the public from the impacts of wildfires. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.


Assuntos
Poluentes Atmosféricos , Doenças Cardiovasculares , Ozônio , Doenças Respiratórias , Incêndios Florestais , Ozônio/efeitos adversos , Ozônio/análise , Humanos , Doenças Cardiovasculares/mortalidade , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Doenças Respiratórias/mortalidade , Exposição Ambiental/efeitos adversos , Saúde Global , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
10.
JAMA Netw Open ; 7(6): e2419250, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38941091

RESUMO

Importance: Although existing research has found daily heat to be associated with dementia-related outcomes, there is still a gap in understanding the differing associations of nighttime and daytime heat with dementia-related deaths. Objectives: To quantitatively assess the risk and burden of dementia-related deaths associated with short-term nighttime and daytime heat exposure and identify potential effect modifications. Design, Setting, and Participants: This case-crossover study analyzed individual death records for dementia across all mainland China counties from January 1, 2013, to December 31, 2019, using a time-stratified case-crossover approach. Statistical analysis was conducted from January 1, 2013, to December 31, 2019. Exposures: Two novel heat metrics: hot night excess (HNE) and hot day excess (HDE), representing nighttime and daytime heat intensity, respectively. Main Outcomes and Measures: Main outcomes were the relative risk and burden of dementia-related deaths associated with HNE and HDE under different definitions. Analysis was conducted with conditional logistic regression integrated with the distributed lag nonlinear model. Results: The study involved 132 573 dementia-related deaths (mean [SD] age, 82.5 [22.5] years; 73 086 women [55.1%]). For a 95% threshold, the median hot night threshold was 24.5 °C (IQR, 20.1 °C-26.2 °C) with an HNE of 3.7 °C (IQR, 3.1 °C-4.3 °C), and the median hot day threshold was 33.3 °C (IQR, 29.9 °C-34.7 °C) with an HDE of 0.6 °C (IQR, 0.5 °C-0.8 °C). Both nighttime and daytime heat were associated with increased risk of dementia-related deaths. Hot nights' associations with risk of dementia-related deaths persisted for 6 days, while hot days' associations with risk of dementia-related deaths extended over 10 days. Extreme HDE had a higher relative risk of dementia-related deaths, with a greater burden associated with extreme HNE at more stringent thresholds. At a 97.5% threshold, the odds ratio for dementia-related deaths was 1.38 (95% CI, 1.22-1.55) for extreme HNE and 1.46 (95% CI, 1.27-1.68) for extreme HDE, with an attributable fraction of 1.45% (95% empirical confidence interval [95% eCI], 1.43%-1.47%) for extreme HNE and 1.10% (95% eCI, 1.08%-1.11%) for extreme HDE. Subgroup analyses suggested heightened susceptibility among females, individuals older than 75 years of age, and those with lower educational levels. Regional disparities were observed, with individuals in the south exhibiting greater sensitivity to nighttime heat and those in the north to daytime heat. Conclusions and Relevance: Results of this nationwide case-crossover study suggest that both nighttime and daytime heat are associated with increased risk of dementia-related deaths, with a greater burden associated with nighttime heat. These findings underscore the necessity of time-specific interventions to mitigate extreme heat risk.


Assuntos
Estudos Cross-Over , Demência , Temperatura Alta , Humanos , China/epidemiologia , Demência/mortalidade , Demência/epidemiologia , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Temperatura Alta/efeitos adversos , Fatores de Risco
11.
Chest ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906462

RESUMO

BACKGROUND: Associations between air pollution and the acute exacerbations (AEs) of COPD have been established primarily in time-series studies in which exposure and case data were at the aggregate level, limiting the identification of susceptible populations. RESEARCH QUESTION: Are air pollutants associated with the onset of AEs of COPD in China? Who is more susceptible to the effects of air pollutants? STUDY DESIGN AND METHODS: Data regarding AEs of COPD were obtained from the Acute Exacerbation of Chronic Obstructive Pulmonary Disease Registry study, and air pollution data were assigned to individuals based on their residential address. We adopted a time-stratified case-crossover study design combined with conditional logistic regression models to estimate the associations between six air pollutants and AEs of COPD. Stratified analyses were performed by individual characteristics, disease severity, COPD types, and the season of exacerbations. RESULTS: A total of 5,746 patients were included. At a 2-day lag, for each interquartile range increase in fine particulate matter (PM2.5) and inhalable particulate matter (PM10) concentrations, ORs for AEs of COPD were 1.054 (95% CI, 1.012-1.097) and 1.050 (95% CI, 1.009-1.092), respectively. The associations were more pronounced in participants who were younger than 65 years, had experienced at least one severe AE of COPD in the past year, received a diagnosis of COPD between 20 and 50 years of age, and experienced AEs of COPD in the cool seasons. By contrast, significant associations for nitrogen dioxide, sulfur dioxide, and carbon monoxide lost significance when excluding patients collected before 2020 or with larger distance from the monitoring station, and no significant association was observed for ozone. INTERPRETATION: This study provides robust evidence that short-term exposure to PM2.5 and PM10 was associated with higher odds of AEs of COPD onset. Individuals who are young, have severe COPD, or whose first diagnosis of COPD was made when they were between 20 and 50 years of age and experience an exacerbation during the cooler seasons may be particularly susceptible. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT2657525; URL: www. CLINICALTRIALS: gov.

12.
Environ Res ; 252(Pt 3): 119054, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704007

RESUMO

BACKGROUND: The connections between fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) and daily mortality of viral pneumonia and bacterial pneumonia were unclear. OBJECTIVES: To distinguish the connections between PM2.5 and PM2.5-10 and daily mortality due to viral pneumonia and bacterial pneumonia. METHODS: Using a comprehensive national death registry encompassing all areas of mainland China, we conducted a case-crossover investigation from 2013 to 2019 at an individual level. Residential daily particle concentrations were evaluated using satellite-based models with a spatial resolution of 1 km. To analyze the data, we employed the conditional logistic regression model in conjunction with polynomial distributed lag models. RESULTS: We included 221,507 pneumonia deaths in China. Every interquartile range (IQR) elevation in concentrations of PM2.5 (lag 0-2 d, 37.6 µg/m3) was associated with higher magnitude of mortality for viral pneumonia (3.03%) than bacterial pneumonia (2.14%), whereas the difference was not significant (p-value for difference = 0.38). An IQR increase in concentrations of PM2.5-10 (lag 0-2 d, 28.4 µg/m3) was also linked to higher magnitude of mortality from viral pneumonia (3.06%) compared to bacterial pneumonia (2.31%), whereas the difference was not significant (p-value for difference = 0.52). After controlling for gaseous pollutants, their effects were all stable; however, with mutual adjustment, the associations of PM2.5 remained, and those of PM2.5-10 were no longer statistically significant. Greater magnitude of associations was noted in individuals aged 75 years and above, as well as during the cold season. CONCLUSION: This nationwide study presents compelling evidence that both PM2.5 and PM2.5-10 exposures could increase pneumonia mortality of viral and bacterial causes, highlighting the more robust effects of PM2.5 and somewhat higher sensitivity of viral pneumonia.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Estudos Cross-Over , Material Particulado , Material Particulado/análise , Material Particulado/efeitos adversos , Humanos , China/epidemiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Pneumonia Bacteriana/mortalidade , Pneumonia/mortalidade , Pneumonia/induzido quimicamente , Exposição Ambiental/efeitos adversos , Idoso de 80 Anos ou mais , Tamanho da Partícula , Pneumonia Viral/mortalidade , Adulto
13.
Int J Epidemiol ; 53(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38725299

RESUMO

BACKGROUND: Model-estimated air pollution exposure products have been widely used in epidemiological studies to assess the health risks of particulate matter with diameters of ≤2.5 µm (PM2.5). However, few studies have assessed the disparities in health effects between model-estimated and station-observed PM2.5 exposures. METHODS: We collected daily all-cause, respiratory and cardiovascular mortality data in 347 cities across 15 countries and regions worldwide based on the Multi-City Multi-Country collaborative research network. The station-observed PM2.5 data were obtained from official monitoring stations. The model-estimated global PM2.5 product was developed using a machine-learning approach. The associations between daily exposure to PM2.5 and mortality were evaluated using a two-stage analytical approach. RESULTS: We included 15.8 million all-cause, 1.5 million respiratory and 4.5 million cardiovascular deaths from 2000 to 2018. Short-term exposure to PM2.5 was associated with a relative risk increase (RRI) of mortality from both station-observed and model-estimated exposures. Every 10-µg/m3 increase in the 2-day moving average PM2.5 was associated with overall RRIs of 0.67% (95% CI: 0.49 to 0.85), 0.68% (95% CI: -0.03 to 1.39) and 0.45% (95% CI: 0.08 to 0.82) for all-cause, respiratory, and cardiovascular mortality based on station-observed PM2.5 and RRIs of 0.87% (95% CI: 0.68 to 1.06), 0.81% (95% CI: 0.08 to 1.55) and 0.71% (95% CI: 0.32 to 1.09) based on model-estimated exposure, respectively. CONCLUSIONS: Mortality risks associated with daily PM2.5 exposure were consistent for both station-observed and model-estimated exposures, suggesting the reliability and potential applicability of the global PM2.5 product in epidemiological studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Cidades , Exposição Ambiental , Material Particulado , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Doenças Cardiovasculares/mortalidade , Cidades/epidemiologia , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Doenças Respiratórias/mortalidade , Masculino , Mortalidade/tendências , Feminino , Pessoa de Meia-Idade , Idoso , Monitoramento Ambiental/métodos , Adulto , Aprendizado de Máquina
14.
Environ Int ; 187: 108712, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714028

RESUMO

BACKGROUND: Temperature variability (TV) is associated with increased mortality risk. However, it is still unknown whether intra-day or inter-day TV has different effects. OBJECTIVES: We aimed to assess the association of intra-day TV and inter-day TV with all-cause, cardiovascular, and respiratory mortality. METHODS: We collected data on total, cardiovascular, and respiratory mortality and meteorology from 758 locations in 47 countries or regions from 1972 to 2020. We defined inter-day TV as the standard deviation (SD) of daily mean temperatures across the lag interval, and intra-day TV as the average SD of minimum and maximum temperatures on each day. In the first stage, inter-day and intra-day TVs were modelled simultaneously in the quasi-Poisson time-series model for each location. In the second stage, a multi-level analysis was used to pool the location-specific estimates. RESULTS: Overall, the mortality risk due to each interquartile range [IQR] increase was higher for intra-day TV than for inter-day TV. The risk increased by 0.59% (95% confidence interval [CI]: 0.53, 0.65) for all-cause mortality, 0.64% (95% CI: 0.56, 0.73) for cardiovascular mortality, and 0.65% (95% CI: 0.49, 0.80) for respiratory mortality per IQR increase in intra-day TV0-7 (0.9 °C). An IQR increase in inter-day TV0-7 (1.6 °C) was associated with 0.22% (95% CI: 0.18, 0.26) increase in all-cause mortality, 0.44% (95% CI: 0.37, 0.50) increase in cardiovascular mortality, and 0.31% (95% CI: 0.21, 0.41) increase in respiratory mortality. The proportion of all-cause deaths attributable to intra-day TV0-7 and inter-day TV0-7 was 1.45% and 0.35%, respectively. The mortality risks varied by lag interval, climate area, season, and climate type. CONCLUSIONS: Our results indicated that intra-day TV may explain the main part of the mortality risk related to TV and suggested that comprehensive evaluations should be proposed in more countries to help protect human health.


Assuntos
Doenças Cardiovasculares , Temperatura , Humanos , Doenças Cardiovasculares/mortalidade , Mortalidade , Doenças Respiratórias/mortalidade , Estações do Ano
15.
Environ Int ; 187: 108714, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718674

RESUMO

BACKGROUND: Ultrafine particle (UFP) has been linked with higher risks of cardiovascular diseases; however, the biological mechanisms remain to be fully elucidated. OBJECTIVES: This study aims to investigate the cardiovascular responses to short-term UFP exposure and the biological pathways involved. METHODS: A longitudinal panel study was conducted among 32 healthy, non-smoking young adults in Shanghai, China, who were engaged in five rounds of follow-ups between December 2020 and November 2021. Individual exposures were calculated based on the indoor and outdoor real-time measurements. Blood pressure, arterial stiffness, targeted biomarkers, and untargeted proteomics and metabolomics were examined during each follow-up. Linear mixed-effect models were applied to analyze the exposure and health data. The differential proteins and metabolites were used for pathway enrichment analyses. RESULTS: Short-term UFP exposure was associated with significant increases in blood pressure and arterial stiffness. For example, systolic blood pressure increased by 2.10 % (95 % confidence interval: 0.63 %, 3.59 %) corresponding to each interquartile increase in UFP concentrations at lag 0-3 h, while pulse wave velocity increased by 2.26 % (95 % confidence interval: 0.52 %, 4.04 %) at lag 7-12 h. In addition, dozens of molecular biomarkers altered significantly. These effects were generally present within 24 h after UFP exposure, and were robust to the adjustment of co-pollutants. Molecular changes detected in proteomics and metabolomics analyses were mainly involved in systemic inflammation, oxidative stress, endothelial dysfunction, coagulation, and disturbance in lipid transport and metabolism. DISCUSSION: This study provides novel and compelling evidence on the detrimental subclinical cardiovascular effects in response to short-term UFP exposure. The multi-omics profiling further offers holistic insights into the underlying biological pathways.


Assuntos
Poluentes Atmosféricos , Doenças Cardiovasculares , Material Particulado , Humanos , Estudos Longitudinais , China , Masculino , Adulto , Adulto Jovem , Feminino , Pressão Sanguínea , Biomarcadores/sangue , Exposição Ambiental/estatística & dados numéricos , Rigidez Vascular/efeitos dos fármacos , Proteômica
16.
Environ Int ; 187: 108722, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733765

RESUMO

Chinese children are exposed to broad environmental risks ranging from well-known hazards, such as pesticides and heavy metals, to emerging threats including many new man-made chemicals. Although anecdotal evidence suggests that the exposure levels in Chinese children are substantially higher than those of children in developed countries, a systematic assessment is lacking. Further, while these exposures have been linked to a variety of childhood diseases, such as respiratory, endocrine, neurological, behavioral, and malignant disorders, the magnitude of the associations is often unclear. This review provides a current epidemiologic overview of commonly reported environmental contaminants and their potential impact on children's health in China. We found that despite a large volume of studies on various topics, there is a need for more high-quality research and better-coordinated regional and national data collection. Moreover, prevention of such diseases will depend not only on training of environmental health professionals and enhanced research programs, but also on public education, legislation, and networking.


Assuntos
Saúde da Criança , Exposição Ambiental , Poluentes Ambientais , Humanos , China , Criança , Poluentes Ambientais/análise , Pré-Escolar , Praguicidas/análise
17.
PLoS Med ; 21(5): e1004364, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743771

RESUMO

BACKGROUND: The regional disparity of heatwave-related mortality over a long period has not been sufficiently assessed across the globe, impeding the localisation of adaptation planning and risk management towards climate change. We quantified the global mortality burden associated with heatwaves at a spatial resolution of 0.5°×0.5° and the temporal change from 1990 to 2019. METHODS AND FINDINGS: We collected data on daily deaths and temperature from 750 locations of 43 countries or regions, and 5 meta-predictors in 0.5°×0.5° resolution across the world. Heatwaves were defined as location-specific daily mean temperature ≥95th percentiles of year-round temperature range with duration ≥2 days. We first estimated the location-specific heatwave-mortality association. Secondly, a multivariate meta-regression was fitted between location-specific associations and 5 meta-predictors, which was in the third stage used with grid cell-specific meta-predictors to predict grid cell-specific association. Heatwave-related excess deaths were calculated for each grid and aggregated. During 1990 to 2019, 0.94% (95% CI: 0.68-1.19) of deaths [i.e., 153,078 cases (95% eCI: 109,950-194,227)] per warm season were estimated to be from heatwaves, accounting for 236 (95% eCI: 170-300) deaths per 10 million residents. The ratio between heatwave-related excess deaths and all premature deaths per warm season remained relatively unchanged over the 30 years, while the number of heatwave-related excess deaths per 10 million residents per warm season declined by 7.2% per decade in comparison to the 30-year average. Locations with the highest heatwave-related death ratio and rate were in Southern and Eastern Europe or areas had polar and alpine climates, and/or their residents had high incomes. The temporal change of heatwave-related mortality burden showed geographic disparities, such that locations with tropical climate or low incomes were observed with the greatest decline. The main limitation of this study was the lack of data from certain regions, e.g., Arabian Peninsula and South Asia. CONCLUSIONS: Heatwaves were associated with substantial mortality burden that varied spatiotemporally over the globe in the past 30 years. The findings indicate the potential benefit of governmental actions to enhance health sector adaptation and resilience, accounting for inequalities across communities.


Assuntos
Mudança Climática , Calor Extremo , Humanos , Calor Extremo/efeitos adversos , Saúde Global/tendências , Temperatura Alta/efeitos adversos , Mortalidade/tendências , Estações do Ano
18.
Environ Health Perspect ; 132(5): 57005, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752990

RESUMO

BACKGROUND: Although ambient temperature has been linked with injury incidence, there have been few nationwide studies to quantify the temperature-related risk and burden of cause-specific injury hospitalizations. Additionally, the impact of human-induced climate change to injury burden remains unknown. OBJECTIVES: Our objectives are to examine the associations between ambient temperature and injury hospitalizations from various causes and to quantify the contribution of human-induced warming to the heat-related burden. METHODS: We collected injury hospitalization data from a nationwide hospital-based registry in China during 2000-2019. Using a time-stratified case-crossover design, we investigated the associations between daily mean temperature (°C) and cause-specific injury hospitalizations. We also quantified the burden of heat-related injuries under the scenarios with and without anthropogenic forcing, using the Detection and Attribution Model Intercomparison Project to assess the contribution of human-induced warming. RESULTS: Our study included a total of 988,087 patients with hospitalization records for injuries. Overall, compared to the temperature at minimum risk of hospitalization (-12.1°C), the relative risk of hospitalization at extreme hot temperature (30.8°C, 97.5th percentile) was 1.18 [95% confidence interval (CI): 1.14, 1.22], with an approximately linear association between temperature and hospitalization. Vulnerability to heat-related injuries was more pronounced among males, young (<18 years of age) or middle-aged (45-64 years of age) individuals, and those living in the North. The heat-related attributable fraction increased from 23.2% in the 2000s to 23.6% in the 2010s, with a corresponding increase in the contribution of human-induced change over time. In the 2010s, the heat-related attributable fractions for specific causes of injury ranged from 12.4% to 54.4%, with human-induced change accounting for 6.7% to 10.6% of the burden. DISCUSSION: This nationwide study presents new evidence of significant associations between temperature and cause-specific injury hospitalizations in China and highlights the increasing contribution of human-induced warming to the injury burden. https://doi.org/10.1289/EHP14057.


Assuntos
Mudança Climática , Estudos Cross-Over , Hospitalização , Temperatura Alta , Humanos , China/epidemiologia , Hospitalização/estatística & dados numéricos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Temperatura Alta/efeitos adversos , Adolescente , Adulto Jovem , Idoso , Criança , Pré-Escolar , Lactente , Ferimentos e Lesões/epidemiologia , Recém-Nascido
19.
Environ Sci Technol ; 58(23): 9991-10000, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814053

RESUMO

The circadian rhythm regulates many crucial physiological processes, impacting human aging and aging-related outcomes. Observational evidence links circadian rhythm disturbance to PM2.5 exposure, yet the underlying DNA methylation mechanisms remain unclear due to limited PM2.5-dominated experimental settings. Therefore, we investigated the associations between short-term PM2.5 exposure and DNA methylation changes of 1188 CpG candidates across circadian genes among 32 young adults in the FDU study, with the validation in 26 individuals from the PKU study. Further mediation analyses tested whether DNA methylation of circadian genes could mediate the influence of PM2.5 on aging measured by three epigenetic ages: DNAmGrimAge, DunedinPoAm, and the mortality risk score. We identified three CpG sites associated with personal PM2.5 exposure: cg01248361 (CSNK2A2), cg17728065 (RORA), and cg22513396 (PRKAG2). Acute effects of PM2.5 on the three loci could be mediated by several circulating biomarkers, including MDA and EGF, with up to ∼30% of mediated proportions. Three loci further showed varying potentials in mediating the aging acceleration effect of PM2.5. Locus cg17728065 is the key site exhibiting a robust mediating effect (7.54-12.52%) on PM2.5-induced aging acceleration. Our findings demonstrated that PM2.5, even short-term peaks, could leave imprints on human aging via inducing aberrant temporal fluctuation in circadian homeostasis captured by DNA methylation profiles.


Assuntos
Ritmo Circadiano , Metilação de DNA , Material Particulado , Humanos , Masculino , Feminino , Adulto , Exposição Ambiental , Ilhas de CpG
20.
Diabetes Care ; 47(8): 1400-1407, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776453

RESUMO

OBJECTIVE: Evidence of the associations between fine particulate matter (PM2.5) and diabetes risk from women of reproductive age, in whom diabetes may have adverse long-term health effects for both themselves and future generations, remains scarce. We therefore examined the associations of long-term PM2.5 exposure with fasting blood glucose (FBG) level and diabetes risk in women of reproductive age in China. RESEARCH DESIGN AND METHODS: This study included 20,076,032 women age 20-49 years participating in the National Free Preconception Health Examination Project in China between 2010 and 2015. PM2.5 was estimated using a satellite-based model. Multivariate linear and logistic regression models were used to examine the associations of PM2.5 exposure with FBG level and diabetes risk, respectively. Diabetes burden attributable to PM2.5 was estimated using attributable fraction (AF) and attributable number. RESULTS: PM2.5 showed monotonic relationships with elevated FBG level and diabetes risk. Each interquartile range (27 µg/m3) increase in 3-year average PM2.5 concentration was associated with a 0.078 mmol/L (95% CI 0.077, 0.079) increase in FBG and 18% (95% CI 16%, 19%) higher risk of diabetes. The AF attributed to PM2.5 exposure exceeding 5 µg/m3 was 29.0% (95% CI 27.5%, 30.5%), corresponding to an additional 78.6 thousand (95% CI 74.5, 82.6) diabetes cases. Subgroup analyses showed more pronounced diabetes risks in those who were overweight or obese, age >35 years, less educated, of minority ethnicity, registered as a rural household, and residing in western China. CONCLUSIONS: We found long-term PM2.5 exposure was associated with higher diabetes risk in women of reproductive age in China.


Assuntos
Glicemia , Material Particulado , Humanos , Feminino , Material Particulado/efeitos adversos , Adulto , Glicemia/metabolismo , Glicemia/análise , China/epidemiologia , Pessoa de Meia-Idade , Adulto Jovem , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/sangue , Jejum/sangue , Exposição Ambiental/efeitos adversos , População do Leste Asiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA