Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1161604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113233

RESUMO

2Duf, named after the presence of a transmembrane (TM) Duf421 domain and a small Duf1657 domain in its sequence, is likely located in the inner membrane (IM) of spores in some Bacillus species carrying a transposon with an operon termed spoVA 2mob. These spores are known for their extreme resistance to wet heat, and 2Duf is believed to be the primary contributor to this trait. In this study, we found that the absence of YetF or YdfS, both Duf421 domain-containing proteins and found only in wild-type (wt) B. subtilis spores with YetF more abundant, leads to decreased resistance to wet heat and agents that can damage spore core components. The IM phospholipid compositions and core water and calcium-dipicolinic acid levels of YetF-deficient spores are similar to those of wt spores, but the deficiency could be restored by ectopic insertion of yetF, and overexpression of YetF increased wt spore resistance to wet heat. In addition, yetF and ydfS spores have decreased germination rates as individuals and populations with germinant receptor-dependent germinants and increased sensitivity to wet heat during germination, potentially due to damage to IM proteins. These data are consistent with a model in which YetF, YdfS and their homologs modify IM structure to reduce IM permeability and stabilize IM proteins against wet heat damage. Multiple yetF homologs are also present in other spore forming Bacilli and Clostridia, and even some asporogenous Firmicutes, but fewer in asporogenous species. The crystal structure of a YetF tetramer lacking the TM helices has been reported and features two distinct globular subdomains in each monomer. Sequence alignment and structure prediction suggest this fold is likely shared by other Duf421-containing proteins, including 2Duf. We have also identified naturally occurring 2duf homologs in some Bacilli and Clostridia species and in wt Bacillus cereus spores, but not in wt B. subtilis. Notably, the genomic organization around the 2duf gene in most of these species is similar to that in spoVA 2mob, suggesting that one of these species was the source of the genes on this operon in the extremely wet heat resistant spore formers.

2.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841229

RESUMO

AIMS: This work aimed to characterize spore inner membrane (IM) properties and the mechanism of spore killing by wet heat and H2O2 with spores overexpressing the 2Duf protein, which is naturally encoded from a transposon found only in some Bacillus strains with much higher spore resistance than wild-type spores. METHODS AND RESULTS: Killing of Bacillus subtilis spores by wet heat or hydrogen peroxide (H2O2) was slower when 2Duf was present, and Ca-dipicolinic acid release was slower than killing. Viabilities on rich plates of wet heat- or H2O2 -treated spores +/- 2Duf were lower when NaCl was added, but higher with glucose. Addition of glucose but not Casamino acids addition increased treated spores' viability on minimal medium plates. Spores with 2Duf required higher heat activation for germination, and their germination was more wet-heat resistant than that of wild-type spores, processes that involve IM proteins. IM permeability and lipid mobility were lower in spores with 2Duf, although IM phospholipid composition was similar in spores +/- 2Duf. CONCLUSIONS: These results and previous work suggests that wet heat and H2O2 kill spores by damaging an IM enzyme or enzymes involved in oxidative phosphorylation.


Assuntos
Temperatura Alta , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Bacillus subtilis/metabolismo , Esporos Bacterianos/metabolismo , Proteínas de Membrana/metabolismo , Glucose/metabolismo , Ácidos Picolínicos/metabolismo
3.
J Appl Microbiol ; 132(3): 2157-2166, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34724311

RESUMO

AIMS: A protein termed 2Duf greatly increases wet heat resistance of Bacillus subtilis spores. The current work examines the effects of 2Duf on spore resistance to other sporicides, including chemicals that act on or must cross spores' inner membrane (IM), where 2Duf is likely present. The overall aim was to gain a deeper understanding of how 2Duf affects spore resistance, and of spore resistance itself. METHODS AND RESULTS: 2Duf's presence increased spore resistance to chemicals that damage or must cross the IM to kill spores. Spore coat removal decreased 2Duf-spore resistance to chemicals and wet heat, and 2Duf-spores made at higher temperatures were more resistant to wet heat and chemicals. 2Duf-less spores lacking coats and Ca-dipicolinic acid were also extremely sensitive to wet heat and chemicals that transit the IM to kill spores. CONCLUSIONS: The new work plus previous results lead to a number of important conclusions as follows. (1) 2Duf may influence spore resistance by decreasing the permeability of and lipid mobility in spores' IM. (2) Since wet heat-killed spores that germinate do not accumulate ATP, wet heat may inactivate some spore IM protein essential in ATP production which is stabilized in a more rigid IM. (3) Both Ca-dipicolinic acid and the spore coat play an important role in the permeability of the spore IM, and thus in many spore resistance properties. SIGNIFICANCE AND IMPACT OF THE STUDY: The work in this manuscript gives a new insight into mechanisms of spore resistance to chemicals and wet heat, to the understanding of spore wet heat killing, and the role of Ca-dipicolinic acid and the coat in spore resistance.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Temperatura Alta , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA