Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Cells ; 13(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273031

RESUMO

DNA double strand breaks (DSBs) are critical for the efficacy of radiotherapy as they lead to cell death if not repaired. DSBs caused by ionizing radiation (IR) initiate histone modifications and accumulate DNA repair proteins, including 53BP1, which forms distinct foci at damage sites and serves as a marker for DSBs. DSB repair primarily occurs through Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). NHEJ directly ligates DNA ends, employing proteins such as DNA-PKcs, while HR, involving proteins such as Rad54, uses a sister chromatid template for accurate repair and functions in the S and G2 phases of the cell cycle. Both pathways are crucial, as illustrated by the IR sensitivity in cells lacking DNA-PKcs or Rad54. We generated mouse embryonic stem (mES) cells which are knockout (KO) for DNA-PKcs and Rad54 to explore the combined role of HR and NHEJ in DSB repair. We found that cells lacking both DNA-PKcs and Rad54 are hypersensitive to X-ray radiation, coinciding with impaired 53BP1 focus resolution and a more persistent G2 phase cell cycle block. Additionally, mES cells deficient in DNA-PKcs or both DNA-PKcs and Rad54 exhibit an increased nuclear size approximately 18-24 h post-irradiation. To further explore the role of Rad54 in the absence of DNA-PKcs, we generated DNA-PKcs KO mES cells expressing GFP-tagged wild-type (WT) or ATPase-defective Rad54 to track the Rad54 foci over time post-irradiation. Cells lacking DNA-PKcs and expressing ATPase-defective Rad54 exhibited a similar phenotypic response to IR as those lacking both DNA-PKcs and Rad54. Despite a strong G2 phase arrest, live-cell imaging showed these cells eventually progress through mitosis, forming micronuclei. Additionally, mES cells lacking DNA-PKcs showed increased Rad54 foci over time post-irradiation, indicating an enhanced reliance on HR for DSB repair without DNA-PKcs. Our findings underscore the essential roles of HR and NHEJ in maintaining genomic stability post-IR in mES cells. The interplay between these pathways is crucial for effective DSB repair and cell cycle progression, highlighting potential targets for enhancing radiotherapy outcomes.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Células-Tronco Embrionárias Murinas , Radiação Ionizante , Animais , Camundongos , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/efeitos da radiação , Células-Tronco Embrionárias Murinas/citologia , Recombinação Homóloga/efeitos da radiação , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteínas Nucleares
2.
Nucleic Acids Res ; 52(14): 8332-8343, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38953170

RESUMO

BRCA2 is an essential tumor suppressor protein involved in promoting faithful repair of DNA lesions. The activity of BRCA2 needs to be tuned precisely to be active when and where it is needed. Here, we quantified the spatio-temporal dynamics of BRCA2 in living cells using aberration-corrected multifocal microscopy (acMFM). Using multicolor imaging to identify DNA damage sites, we were able to quantify its dynamic motion patterns in the nucleus and at DNA damage sites. While a large fraction of BRCA2 molecules localized near DNA damage sites appear immobile, an additional fraction of molecules exhibits subdiffusive motion, providing a potential mechanism to retain an increased number of molecules at DNA lesions. Super-resolution microscopy revealed inhomogeneous localization of BRCA2 relative to other DNA repair factors at sites of DNA damage. This suggests the presence of multiple nanoscale compartments in the chromatin surrounding the DNA lesion, which could play an important role in the contribution of BRCA2 to the regulation of the repair process.


Assuntos
Proteína BRCA2 , Dano ao DNA , Reparo do DNA , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Humanos , Cromatina/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Linhagem Celular Tumoral , DNA/metabolismo
3.
Nucleic Acids Res ; 52(12): 7337-7353, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38828772

RESUMO

In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.


Assuntos
Motivos de Aminoácidos , Proteína BRCA2 , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Ligação Proteica , Rad51 Recombinase , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/química , Proteína BRCA2/metabolismo , Proteína BRCA2/química , Proteína BRCA2/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Camundongos , Humanos , Sítios de Ligação , Modelos Moleculares , Cristalografia por Raios X , Recombinação Homóloga , Proteínas de Ligação a Fosfato
4.
NPJ Aging ; 10(1): 31, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902222

RESUMO

Aortic aneurysms are dilatations of the aorta that can rupture when left untreated. We used the aneurysmal Fibulin-4R/R mouse model to further unravel the underlying mechanisms of aneurysm formation. RNA sequencing of 3-month-old Fibulin-4R/R aortas revealed significant upregulation of senescence-associated secretory phenotype (SASP) factors and key senescence factors, indicating the involvement of senescence. Analysis of aorta histology and of vascular smooth muscle cells (VSMCs) in vitro confirmed the senescent phenotype of Fibulin-4R/R VSMCs by revealing increased SA-ß-gal, p21, and p16 staining, increased IL-6 secretion, increased presence of DNA damage foci and increased nuclei size. Additionally, we found that p21 luminescence was increased in the dilated aorta of Fibulin-4R/R|p21-luciferase mice. Our studies identify a cellular aging cascade in Fibulin-4 aneurysmal disease, by revealing that Fibulin-4R/R aortic VSMCs have a pronounced SASP and a senescent phenotype that may underlie aortic wall degeneration. Additionally, we demonstrated the therapeutic effect of JAK/STAT and TGF-ß pathway inhibition, as well as senolytic treatment on Fibulin-4R/R VSMCs in vitro. These findings can contribute to improved therapeutic options for aneurysmal disease aimed at reducing senescent cells.

5.
Nat Commun ; 15(1): 3490, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664429

RESUMO

Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.


Assuntos
Caenorhabditis elegans , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA , Endonucleases , Fator de Transcrição TFIIH , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Animais , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Endonucleases/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
6.
Mol Imaging Biol ; 26(4): 628-637, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38498063

RESUMO

PURPOSE: In this study, we explored the role of apoptosis as a potential biomarker for cardiac failure using functional micro-CT and fluorescence molecular tomography (FMT) imaging techniques in Ercc1 mutant mice. Ercc1 is involved in multiple DNA repair pathways, and its mutations contribute to accelerated aging phenotypes in both humans and mice, due to the accumulation of DNA lesions that impair vital DNA functions. We previously found that systemic mutations and cardiomyocyte-restricted deletion of Ercc1 in mice results in left ventricular (LV) dysfunction at older age. PROCEDURES AND RESULTS: Here we report that combined functional micro-CT and FMT imaging allowed us to detect apoptosis in systemic Ercc1 mutant mice prior to the development of overt LV dysfunction, suggesting its potential as an early indicator and contributing factor of cardiac impairment. The detection of apoptosis in vivo was feasible as early as 12 weeks of age, even when global LV function appeared normal, underscoring the potential of apoptosis as an early predictor of LV dysfunction, which subsequently manifested at 24 weeks. CONCLUSIONS: This study highlights the utility of combined functional micro-CT and FMT imaging in assessing cardiac function and detecting apoptosis, providing valuable insights into the potential of apoptosis as an early biomarker for cardiac failure.


Assuntos
Apoptose , Proteínas de Ligação a DNA , Endonucleases , Insuficiência Cardíaca , Miocárdio , Microtomografia por Raio-X , Animais , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Endonucleases/genética , Camundongos , Miocárdio/patologia
7.
Hum Mol Genet ; 33(12): 1090-1104, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38538566

RESUMO

RATIONALE: Pathogenic (P)/likely pathogenic (LP) SMAD3 variants cause Loeys-Dietz syndrome type 3 (LDS3), which is characterized by arterial aneurysms, dissections and tortuosity throughout the vascular system combined with osteoarthritis. OBJECTIVES: Investigate the impact of P/LP SMAD3 variants with functional tests on patient-derived fibroblasts and vascular smooth muscle cells (VSMCs), to optimize interpretation of SMAD3 variants. METHODS: A retrospective analysis on clinical data from individuals with a P/LP SMAD3 variant and functional analyses on SMAD3 patient-derived VSMCs and SMAD3 patient-derived fibroblasts, differentiated into myofibroblasts. RESULTS: Individuals with dominant negative (DN) SMAD3 variant in the MH2 domain exhibited more major events (66.7% vs. 44.0%, P = 0.054), occurring at a younger age compared to those with haploinsufficient (HI) variants. The age at first major event was 35.0 years [IQR 29.0-47.0] in individuals with DN variants in MH2, compared to 46.0 years [IQR 40.0-54.0] in those with HI variants (P = 0.065). Fibroblasts carrying DN SMAD3 variants displayed reduced differentiation potential, contrasting with increased differentiation potential in HI SMAD3 variant fibroblasts. HI SMAD3 variant VSMCs showed elevated SMA expression and altered expression of alternative MYH11 isoforms. DN SMAD3 variant myofibroblasts demonstrated reduced extracellular matrix formation compared to control cell lines. CONCLUSION: Distinguishing between P/LP HI and DN SMAD3 variants can be achieved by assessing differentiation potential, and SMA and MYH11 expression. The differences between DN and HI SMAD3 variant fibroblasts and VSMCs potentially contribute to the differences in disease manifestation. Notably, myofibroblast differentiation seems a suitable alternative in vitro test system compared to VSMCs.


Assuntos
Fibroblastos , Estudos de Associação Genética , Síndrome de Loeys-Dietz , Músculo Liso Vascular , Proteína Smad3 , Humanos , Proteína Smad3/genética , Proteína Smad3/metabolismo , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patologia , Masculino , Feminino , Fibroblastos/metabolismo , Adulto , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Diferenciação Celular/genética , Linhagem Celular , Miócitos de Músculo Liso/metabolismo , Estudos Retrospectivos , Fenótipo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Mutação
8.
Cancers (Basel) ; 16(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398132

RESUMO

Tumors with a pathogenic BRCA1/2 mutation are homologous recombination (HR)-deficient (HRD) and consequently sensitive to platinum-based chemotherapy and Poly-[ADP-Ribose]-Polymerase inhibitors (PARPi). We hypothesized that functional HR status better reflects real-time HR status than BRCA1/2 mutation status. Therefore, we determined the functional HR status of 53 breast cancer (BC) and 38 ovarian cancer (OC) cell lines by measuring the formation of RAD51 foci after irradiation. Discrepancies between functional HR and BRCA1/2 mutation status were investigated using exome sequencing, methylation and gene expression data from 50 HR-related genes. A pathogenic BRCA1/2 mutation was found in 10/53 (18.9%) of BC and 7/38 (18.4%) of OC cell lines. Among BRCA1/2-mutant cell lines, 14/17 (82.4%) were HR-proficient (HRP), while 1/74 (1.4%) wild-type cell lines was HRD. For most (80%) cell lines, we explained the discrepancy between functional HR and BRCA1/2 mutation status. Importantly, 12/14 (85.7%) BRCA1/2-mutant HRP cell lines were explained by mechanisms directly acting on BRCA1/2. Finally, functional HR status was strongly associated with COSMIC single base substitution signature 3, but not BRCA1/2 mutation status. Thus, the majority of BRCA1/2-mutant cell lines do not represent a suitable model for HRD. Moreover, exclusively determining BRCA1/2 mutation status may not suffice for platinum-based chemotherapy or PARPi patient selection.

9.
Sci Adv ; 9(43): eadi7352, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889963

RESUMO

In meiotic homologous recombination (HR), BRCA2 facilitates loading of the recombinases RAD51 and DMC1 at the sites of double-strand breaks (DSBs). The HSF2BP-BRME1 complex interacts with BRCA2. Its absence causes a severe reduction in recombinase loading at meiotic DSB. We previously showed that, in somatic cancer cells ectopically producing HSF2BP, DNA damage can trigger HSF2BP-dependent degradation of BRCA2, which prevents HR. Here, we report that, upon binding to BRCA2, HSF2BP forms octameric rings that are able to interlock into a large ring-shaped 24-mer. Addition of BRME1 leads to dissociation of both of these ring structures and cancels the disruptive effect of HSF2BP on cancer cell resistance to DNA damage. It also prevents BRCA2 degradation during interstrand DNA crosslink repair in Xenopus egg extracts. We propose that, during meiosis, the control of HSF2BPBRCA2 oligomerization by BRME1 ensures timely assembly of the ring complex that concentrates BRCA2 and controls its turnover, thus promoting HR.


Assuntos
Recombinação Homóloga , Rad51 Recombinase , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Dano ao DNA
10.
DNA Repair (Amst) ; 131: 103570, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734176

RESUMO

Live-cell and high-resolution fluorescence microscopy are powerful tools to study the organization and dynamics of DNA double-strand break repair foci and specific repair proteins in single cells. This requires specific induction of DNA double-strand breaks and fluorescent markers to follow the DNA lesions in living cells. In this review, where we focused on mammalian cell studies, we discuss different methods to induce DNA double-strand breaks, how to visualize and quantify repair foci in living cells., We describe different (live-cell) imaging modalities that can reveal details of the DNA double-strand break repair process across multiple time and spatial scales. In addition, recent developments are discussed in super-resolution imaging and single-molecule tracking, and how these technologies can be applied to elucidate details on structural compositions or dynamics of DNA double-strand break repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Animais , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula , DNA , Mamíferos/genética
11.
NPJ Breast Cancer ; 9(1): 80, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777518

RESUMO

We developed a functional ex vivo anthracycline-based sensitivity test. Surgical resection material of primary breast cancer (BC) was used to determine criteria for the ex vivo sensitivity assay based on morphology, proliferation and apoptosis. Subsequently, a proof-of-concept study was performed correlating results of this assay on primary BC biopsies with in vivo response after treatment with anthracycline-containing neoadjuvant chemotherapy (NAC). Cut off values for the ex vivo anthracycline-based sensitivity test were established based on analysis of 21 primary breast tumor samples obtained after surgery. In the proof-of-concept study based on a new set of tumor biopsies, 41 patients were included. Eight biopsies did not contain tumor cells and three patients could not be biopsied for various reasons. In the remaining 30 biopsies, the success rate of the ex vivo test was 77% (23/30); six out of seven failed tests were due to excessive apoptosis, our pre-specified test criteria. Of the 23 patients with a successful ex vivo test result, three patients did not undergo NAC after the biopsy. Here we report the ex vivo anthracycline-based sensitivity assay is feasible on biopsy material and shows 75% concordance between ex vivo outcomes and in vivo MRI response. Unfortunately, the percentage of unsuccessful tests is rather high. This study provides the foundation for further development of ex vivo sensitivity assays.

12.
Nat Cell Biol ; 25(7): 1017-1032, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37414849

RESUMO

Chromatin is dynamically reorganized when DNA replication forks are challenged. However, the process of epigenetic reorganization and its implication for fork stability is poorly understood. Here we discover a checkpoint-regulated cascade of chromatin signalling that activates the histone methyltransferase EHMT2/G9a to catalyse heterochromatin assembly at stressed replication forks. Using biochemical and single molecule chromatin fibre approaches, we show that G9a together with SUV39h1 induces chromatin compaction by accumulating the repressive modifications, H3K9me1/me2/me3, in the vicinity of stressed replication forks. This closed conformation is also favoured by the G9a-dependent exclusion of the H3K9-demethylase JMJD1A/KDM3A, which facilitates heterochromatin disassembly upon fork restart. Untimely heterochromatin disassembly from stressed forks by KDM3A enables PRIMPOL access, triggering single-stranded DNA gap formation and sensitizing cells towards chemotherapeutic drugs. These findings may help in explaining chemotherapy resistance and poor prognosis observed in patients with cancer displaying elevated levels of G9a/H3K9me3.


Assuntos
Heterocromatina , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Heterocromatina/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina , Replicação do DNA , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética
13.
Cancers (Basel) ; 14(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36358669

RESUMO

Hyperthermia is being used as a radio- and chemotherapy sensitizer for a growing range of tumor subtypes in the clinic. Its potential is limited, however, by the ability of cancer cells to activate a protective mechanism known as the heat stress response (HSR). The HSR is marked by the rapid overexpression of molecular chaperones, and recent advances in drug development make their inhibition an attractive option to improve the efficacy of hyperthermia-based therapies. Our previous in vitro work showed that a single, short co-treatment with a HSR (HSP90) inhibitor ganetespib prolongs and potentiates the effects of hyperthermia on DNA repair, enhances hyperthermic sensitization to radio- and chemotherapeutic agents, and reduces thermotolerance. In the current study, we first validated these results using an extended panel of cell lines and more robust methodology. Next, we examined the effects of hyperthermia and ganetespib on global proteome changes. Finally, we evaluated the potential of ganetespib to boost the efficacy of thermo-chemotherapy and thermo-radiotherapy in a xenograft murine model of cervix cancer. Our results revealed new insights into the effects of HSR inhibition on cellular responses to heat and show that ganetespib could be employed to increase the efficacy of hyperthermia when combined with radiation.

14.
Cell Rep Methods ; 2(6): 100237, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35784653

RESUMO

Single-cell proteomics has the potential to decipher tumor heterogeneity, and a method like single-cell proteomics by mass spectrometry (SCoPE-MS) allows profiling several tens of single cells for >1,000 proteins per cell. This method, however, cannot link the proteome of individual cells with phenotypes of interest. Here, we developed a microscopy-based functional single-cell proteomic-profiling technology, called FUNpro, to address this. FUNpro enables screening, identification, and isolation of single cells of interest in a real-time fashion, even if the phenotypes are dynamic or the cells of interest are rare. We applied FUNpro to proteomically profile a newly identified small subpopulation of U2OS osteosarcoma cells displaying an abnormal, prolonged DNA damage response (DDR) after ionizing radiation (IR). With this, we identified the PDS5A protein contributing to the abnormal DDR dynamics and helping the cells survive after IR.


Assuntos
Dano ao DNA , Microscopia , Proteômica/métodos , Proteínas de Ciclo Celular , Radiação Ionizante
15.
Oncogene ; 41(26): 3498-3506, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35662281

RESUMO

Germline BRCA1/2 mutation status is predictive for response to Poly-[ADP-Ribose]-Polymerase (PARP) inhibitors in breast cancer (BC) patients. However, non-germline BRCA1/2 mutated and homologous recombination repair deficient (HRD) tumors are likely also PARP-inhibitor sensitive. Clinical validity and utility of various HRD biomarkers are under investigation. The REpair CAPacity (RECAP) test is a functional method to select HRD tumors based on their inability to form RAD51 foci. We investigated whether this functional test defines a similar group of HRD tumors as DNA-based tests. An HRD enriched cohort (n = 71; 52 primary and 19 metastatic BCs) selected based on the RECAP test (26 RECAP-HRD; 37%), was subjected to DNA-based HRD tests (i.e., Classifier of HOmologous Recombination Deficiency (CHORD) and BRCA1/2-like classifier). Whole genome sequencing (WGS) was carried out for 38 primary and 19 metastatic BCs. The RECAP test identified all bi-allelic BRCA deficient samples (n = 15) in this cohort. RECAP status partially correlated with DNA-based HRD test outcomes (70% concordance for both RECAP-CHORD and RECAP-BRCA1/2-like classifier). RECAP selected additional samples unable to form RAD51 foci, suggesting that this functional assay identified deficiencies in other DNA repair genes, which could also result in PARP-inhibitor sensitivity. Direct comparison of these HRD tests in clinical trials will be required to evaluate the optimal predictive test for clinical decision making.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , DNA , Feminino , Recombinação Homóloga/genética , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Reparo de DNA por Recombinação/genética
16.
Cancers (Basel) ; 14(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267560

RESUMO

Background chemotherapy is part of most breast cancer (BC) treatment schedules. However, a substantial fraction of BC tumors does not respond to the treatment. Unfortunately, no standard biomarkers exist for response prediction. Therefore, we aim to develop ex vivo sensitivity assays for two types of commonly used cytostatics (i.e., platinum derivates and taxanes) on organotypic BC tissue slices. METHODS: Ex vivo cisplatin sensitivity assays were established using organotypic tissue slices derived from the surgical resection material of 13 primary BCs and 20 fresh histological biopsies obtained from various metastatic sites. Furthermore, tissue slices of 10 primary BCs were used to establish a docetaxel ex vivo sensitivity assay. RESULTS: Cisplatin sensitivity was assessed by tissue morphology, proliferation and apoptosis, while the relative increase in the mitotic index was discriminative for docetaxel sensitivity. Based on these read-outs, a scoring system was proposed to discriminate sensitive from resistant tumors for each cytostatic. We successful completed the cisplatin sensitivity assay on 12/16 (75%) biopsies as well. CONCLUSIONS: We developed an ex vivo cisplatin and docetaxel assay on BC slices. We also adapted the assay for biopsy-sized specimens as the next step towards the correlation of ex vivo test results and in vivo responses.

17.
Cancer Res ; 82(3): 510-520, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872965

RESUMO

Optimal treatment of cancer requires diagnostic methods to facilitate therapy choice and prevent ineffective treatments. Direct assessment of therapy response in viable tumor specimens could fill this diagnostic gap. Therefore, we designed a microfluidic platform for assessment of patient treatment response using tumor tissue slices under precisely controlled growth conditions. The optimized Cancer-on-Chip (CoC) platform maintained viability and sustained proliferation of breast and prostate tumor slices for 7 days. No major changes in tissue morphology or gene expression patterns were observed within this time frame, suggesting that the CoC system provides a reliable and effective way to probe intrinsic chemotherapeutic sensitivity of tumors. The customized CoC platform accurately predicted cisplatin and apalutamide treatment response in breast and prostate tumor xenograft models, respectively. The culture period for breast cancer could be extended up to 14 days without major changes in tissue morphology and viability. These culture characteristics enable assessment of treatment outcomes and open possibilities for detailed mechanistic studies. SIGNIFICANCE: The Cancer-on-Chip platform with a 6-well plate design incorporating silicon-based microfluidics can enable optimal patient-specific treatment strategies through parallel culture of multiple tumor slices and diagnostic assays using primary tumor material.


Assuntos
Biomarcadores Farmacológicos/química , Expressão Gênica/genética , Microfluídica/métodos , Técnicas de Cultura de Órgãos/métodos , Humanos
18.
Front Genet ; 12: 738230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659358

RESUMO

The superior dose distribution of particle radiation compared to photon radiation makes it a promising therapy for the treatment of tumors. However, the cellular responses to particle therapy and especially the DNA damage response (DDR) is not well characterized. Compared to photons, particles are thought to induce more closely spaced DNA lesions instead of isolated lesions. How this different spatial configuration of the DNA damage directs DNA repair pathway usage, is subject of current investigations. In this review, we describe recent insights into induction of DNA damage by particle radiation and how this shapes DNA end processing and subsequent DNA repair mechanisms. Additionally, we give an overview of promising DDR targets to improve particle therapy.

19.
Elife ; 102021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34254584

RESUMO

Breast cancer type two susceptibility protein (BRCA2) is an essential protein in genome maintenance, homologous recombination (HR), and replication fork protection. Its function includes multiple interaction partners and requires timely localization to relevant sites in the nucleus. We investigated the importance of the highly conserved DNA-binding domain (DBD) and C-terminal domain (CTD) of BRCA2. We generated BRCA2 variants missing one or both domains in mouse embryonic stem (ES) cells and defined their contribution in HR function and dynamic localization in the nucleus, by single-particle tracking of BRCA2 mobility. Changes in molecular architecture of BRCA2 induced by binding partners of purified BRCA2 were determined by scanning force microscopy. BRCA2 mobility and DNA-damage-induced increase in the immobile fraction were largely unaffected by C-terminal deletions. The purified proteins missing CTD and/or DBD were defective in architectural changes correlating with reduced HR function in cells. These results emphasize BRCA2 activity at sites of damage beyond promoting RAD51 delivery.


Assuntos
Proteína BRCA2/química , Proteína BRCA2/genética , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Conformação de Ácido Nucleico , Animais , Proteína BRCA2/metabolismo , DNA/química , DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Imagem Individual de Molécula
20.
Nat Commun ; 12(1): 4605, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326328

RESUMO

BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.


Assuntos
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espermatogênese/fisiologia , Animais , Proteína BRCA2/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cristalografia por Raios X/métodos , Feminino , Recombinação Homóloga , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Meiose , Camundongos , Modelos Animais , Domínios e Motivos de Interação entre Proteínas , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA