Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 152(5): 1141-1152.e2, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562753

RESUMO

BACKGROUND: Dendritic cells (DCs) are heterogeneous, comprising multiple subsets with unique functional specifications. Our previous work has demonstrated that the specific conventional type 2 DC subset, CSF1R+cDC2s, plays a critical role in sensing aeroallergens. OBJECTIVE: It remains to be understood how CSF1R+cDC2s recognize inhaled allergens. We sought to elucidate the transcriptomic programs and receptor-ligand interactions essential for function of this subset in allergen sensitization. METHODS: We applied single-cell RNA sequencing to mouse lung DCs. Conventional DC-selective knockout mouse models were employed, and mice were subjected to inhaled allergen sensitization with multiple readouts of asthma pathology. Under the clinical arm of this work, human lung transcriptomic data were integrated with mouse data, and bronchoalveolar lavage (BAL) specimens were collected from subjects undergoing allergen provocation, with samples assayed for C1q. RESULTS: We found that C1q is selectively enriched in lung CSF1R+cDC2s, but not in other lung cDC2 or cDC1 subsets. Depletion of C1q in conventional DCs significantly attenuates allergen sensing and features of asthma. Additionally, we found that C1q binds directly to human dust mite allergen, and the C1q receptor CD91 (LRP1) is required for lung CSF1R+cDC2s to recognize the C1q-allergen complex and induce allergic lung inflammation. Lastly, C1q is enriched in human BAL samples following subsegmental allergen challenge, and human RNA sequencing data demonstrate close homology between lung IGSF21+DCs and mouse CSF1R+cDC2s. CONCLUSIONS: C1q is secreted from the CSF1R+cDC2 subset among conventional DCs. Our data indicate that the C1q-LRP1 axis represents a candidate for translational therapeutics in the prevention and suppression of allergic lung inflammation.


Assuntos
Asma , Pneumonia , Animais , Humanos , Camundongos , Alérgenos/metabolismo , Asma/metabolismo , Complemento C1q/metabolismo , Células Dendríticas , Camundongos Knockout , Pneumonia/metabolismo , Receptores Proteína Tirosina Quinases , Receptores de Fator Estimulador de Colônias/metabolismo
2.
Nutrients ; 15(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513651

RESUMO

High-throughput RNA-sequencing can determine the impact of nutrients and their combinations on gene transcription levels in osteocytes, and clarify the biological pathways associated with their impact on bone tissues. Previously, we reported that resveratrol (RES) and peonidin-3-O-glucoside (POG) increased osteoblastogenesis, as well as reduced osteoclastogenesis in transgenic teleost fish models. Here, we perform whole-genome transcriptomic profiling of osteoblasts treated with POG or RES to provide a comprehensive understanding of alterations in gene expression and the molecular mechanisms involved. Cultured human fetal osteoblastic hFOB 1.19 cells were treated with the test compounds, and then RNA was used to prepare RNA-seq libraries, that were sequenced using a NovaSeq 6000. Treatment with POG or RES increased osteoblast proliferation and reduced apoptosis. Transcriptomic profiling showed that of the 29,762 genes investigated, 3177 were differentially expressed (1481 upregulated, 1696 downregulated, FDR ≤ 0.05) in POG-treated osteoblasts. In the RES-treated osteoblasts, 2288 genes were differentially expressed (DGEs, 1068 upregulated, 1220 downregulated, FDR ≤ 0.05). Ingenuity® Pathway Analysis (IPA) of DGEs from RES or POG-treated osteoblasts revealed significant downregulation of the apoptosis, osteoarthritis and HIF1α canonical pathways, and a significant reduction in Rankl mRNA expression. The data suggest that RES and POG have both anabolic and anticlastogenic effects.


Assuntos
Osteoblastos , Osteogênese , Animais , Humanos , Resveratrol/farmacologia , Resveratrol/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Apoptose , RNA/metabolismo
3.
Front Cell Dev Biol ; 9: 668296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178992

RESUMO

Reports of APOE4-associated neurovascular dysfunction during aging and in neurodegenerative disorders has led to ongoing research to identify underlying mechanisms. In this study, we focused on whether the APOE genotype of brain endothelial cells modulates their own phenotype. We utilized a modified primary mouse brain endothelial cell isolation protocol that enabled us to perform experiments without subculture. Through initial characterization we found, that compared to APOE3, APOE4 brain endothelial cells produce less apolipoprotein E (apoE) and have altered metabolic and inflammatory gene expression profiles. Further analysis revealed APOE4 brain endothelial cultures have higher preference for oxidative phosphorylation over glycolysis and, accordingly, higher markers of mitochondrial activity. Mitochondrial activity generates reactive oxygen species, and, with APOE4, there were higher mitochondrial superoxide levels, lower levels of antioxidants related to heme and glutathione and higher markers/outcomes of oxidative damage to proteins and lipids. In parallel, or resulting from reactive oxygen species, there was greater inflammation in APOE4 brain endothelial cells including higher chemokine levels and immune cell adhesion under basal conditions and after low-dose lipopolysaccharide (LPS) treatment. In addition, paracellular permeability was higher in APOE4 brain endothelial cells in basal conditions and after high-dose LPS treatment. Finally, we found that a nuclear receptor Rev-Erb agonist, SR9009, improved functional metabolic markers, lowered inflammation and modulated paracellular permeability at baseline and following LPS treatment in APOE4 brain endothelial cells. Together, our data suggest that autocrine signaling of apoE in brain endothelial cells represents a novel cellular mechanism for how APOE regulates neurovascular function.

4.
JAMA Netw Open ; 2(10): e1912604, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31584682

RESUMO

Importance: Medicaid spending on children and young adults with chronic disease could be decreased through care coordination programs by reducing unnecessary hospital and emergency care. Objective: To assess whether a comprehensive care coordination program reduces Medicaid expenditures by decreasing hospital and emergency department (ED) utilization. Design, Setting, and Participants: This randomized clinical trial included 6259 children and young adults with chronic disease who received public insurance through Illinois Medicaid. In April 2016, eligible youth were randomized to receive comprehensive care coordination through the Coordinated Healthcare for Complex Kids (CHECK) program (n = 3126) or usual care (n = 3119) to measure the effect of the CHECK program on Medicaid expenditures and health care utilization using a difference-in-differences (DID) approach. Data were collected from May 1, 2014, to April 30, 2017, and analyzed in May 2018. Interventions: Care coordination, mental health care, education, and social support were provided to CHECK participants and their family members. Services were tailored based on family and participant need. Main Outcomes and Measures: Mean annual Medicaid expenditures, mean annual health care utilization by category (ED and inpatient), and chronic disease type and risk level. Results: A total of 6259 participants (mean [SD] age, 11.3 [6.4] years; 2918 [46.6%] female; 2594 [41.4%] with medium and high risk) were randomized. Following the exclusion of 14 outliers, 6245 participants were analyzed. The mean (SD) annual Medicaid expenditure before the intervention was $1633 ($4006) for the intervention group and $1703 ($4466) for the usual care group, which decreased to a mean (SD) of $1341 ($3004) and $1413 ($3785), respectively, after the intervention (DID, -$1; 95% CI, -$199 to $196; P = .99). The mean (SD) inpatient utilization before the intervention was 63.0 (344.4) per 1000 person-years (PYs) for the intervention group and 69.3 (370.9) per 1000 PYs for the usual care group, which decreased to 43.5 (297.2) per 1000 PYs and 47.8 (304.9) per 1000 PYs, respectively, after the intervention (DID, 2.0; 95% CI, -17.9 to 21.8; P = .85). Among participants with asthma, those in the intervention group had a greater mean (SD) decrease in ED utilization compared with usual care, but the difference was not significant (-225.9 [65.3] vs -104.5 [80.0] visits per 1000 PY; DID, -121.5; 95% CI, -268.9 to 26.0; P = .11). Similarly, enrolled participants with sickle cell disease had a smaller but not significant mean (SD) increase in ED utilization compared with usual care (583.3 [839.0] vs 3761.9 [4611.2] visits per 1000 PYs; DID, -3178.6; 95% CI, -10 724.3 to 4367.2; P = .41). Conclusions and Relevance: Overall Medicaid expenditures and health care utilization (hospital and ED) decreased similarly for both CHECK participants and the usual care group. Trial Registration: ClinicalTrials.gov identifier: NCT04057521.


Assuntos
Doença Crônica/economia , Assistência Integral à Saúde/economia , Serviço Hospitalar de Emergência/economia , Gastos em Saúde/estatística & dados numéricos , Hospitalização/economia , Medicaid/economia , Adolescente , Criança , Pré-Escolar , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Illinois , Masculino , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Estados Unidos
5.
Am J Physiol Lung Cell Mol Physiol ; 317(3): L392-L401, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313617

RESUMO

Here we describe a novel method for studying the protein "interactome" in primary human cells and apply this method to investigate the effect of posttranslational protein modifications (PTMs) on the protein's functions. We created a novel "biomimetic microsystem platform" (Bio-MSP) to isolate the protein complexes in primary cells by covalently attaching purified His-tagged proteins to a solid microscale support. Using this Bio-MSP, we have analyzed the interactomes of unphosphorylated and phosphomimetic end-binding protein-3 (EB3) in endothelial cells. Pathway analysis of these interactomes demonstrated the novel role of EB3 phosphorylation at serine 162 in regulating the protein's function. We showed that phosphorylation "switches" the EB3 biological network to modulate cellular processes such as cell-to-cell adhesion whereas dephosphorylation of this site promotes cell proliferation. This novel technique provides a useful tool to study the role of PTMs or single point mutations in activating distinct signal transduction networks and thereby the biological function of the protein in health and disease.


Assuntos
Biomimética , Células Endoteliais/metabolismo , Endotélio/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Biomimética/métodos , Biologia Computacional/métodos , Humanos , Fosforilação , Proteínas/metabolismo , Proteômica/métodos , Transdução de Sinais/fisiologia
6.
Cancer Res ; 75(24): 5299-308, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26542213

RESUMO

Altered nitric oxide (•NO) metabolism underlies cancer pathology, but mechanisms explaining many •NO-associated phenotypes remain unclear. We have found that cellular exposure to •NO changes histone posttranslational modifications (PTM) by directly inhibiting the catalytic activity of JmjC-domain containing histone demethylases. Herein, we describe how •NO exposure links modulation of histone PTMs to gene expression changes that promote oncogenesis. Through high-resolution mass spectrometry, we generated an extensive map of •NO-mediated histone PTM changes at 15 critical lysine residues on the core histones H3 and H4. Concomitant microarray analysis demonstrated that exposure to physiologic •NO resulted in the differential expression of over 6,500 genes in breast cancer cells. Measurements of the association of H3K9me2 and H3K9ac across genomic loci revealed that differential distribution of these particular PTMs correlated with changes in the level of expression of numerous oncogenes, consistent with epigenetic code. Our results establish that •NO functions as an epigenetic regulator of gene expression mediated by changes in histone PTMs.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Histonas/genética , Neoplasias/genética , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional/genética , Linhagem Celular Tumoral , Epigênese Genética/fisiologia , Humanos , Espectrometria de Massas , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
7.
J Neurochem ; 133(4): 465-88, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25689586

RESUMO

Chronic glial activation and neuroinflammation induced by the amyloid-ß peptide (Aß) contribute to Alzheimer's disease (AD) pathology. APOE4 is the greatest AD-genetic risk factor; increasing risk up to 12-fold compared to APOE3, with APOE4-specific neuroinflammation an important component of this risk. This editorial review discusses the role of APOE in inflammation and AD, via a literature review, presentation of novel data on Aß-induced neuroinflammation, and discussion of future research directions. The complexity of chronic neuroinflammation, including multiple detrimental and beneficial effects occurring in a temporal and cell-specific manner, has resulted in conflicting functional data for virtually every inflammatory mediator. Defining a neuroinflammatory phenotype (NIP) is one way to address this issue, focusing on profiling the changes in inflammatory mediator expression during disease progression. Although many studies have shown that APOE4 induces a detrimental NIP in peripheral inflammation and Aß-independent neuroinflammation, data for APOE-modulated Aß-induced neuroinflammation are surprisingly limited. We present data supporting the hypothesis that impaired apoE4 function modulates Aß-induced effects on inflammatory receptor signaling, including amplification of detrimental (toll-like receptor 4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways. To ultimately develop APOE genotype-specific therapeutics, it is critical that future studies define the dynamic NIP profile and pathways that underlie APOE-modulated chronic neuroinflammation. In this editorial review, we present data supporting the hypothesis that impaired apoE4 function modulates Aß-induced effects on inflammatory receptor signaling, including amplification of detrimental (TLR4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways, resulting in an adverse NIP that causes neuronal dysfunction. NIP, Neuroinflammatory phenotype; P.I., pro-inflammatory; A.I., anti-inflammatory.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/toxicidade , Apolipoproteínas E/fisiologia , Inflamação/etiologia , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Humanos , Inflamação/tratamento farmacológico , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Proc Natl Acad Sci U S A ; 111(45): 15958-63, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349425

RESUMO

Macrolides are clinically important antibiotics thought to inhibit bacterial growth by impeding the passage of newly synthesized polypeptides through the nascent peptide exit tunnel of the bacterial ribosome. Recent data challenged this view by showing that macrolide antibiotics can differentially affect synthesis of individual proteins. To understand the general mechanism of macrolide action, we used genome-wide ribosome profiling and analyzed the redistribution of ribosomes translating highly expressed genes in bacterial cells treated with high concentrations of macrolide antibiotics. The metagene analysis indicated that inhibition of early rounds of translation, which would be characteristic of the conventional view of macrolide action, occurs only at a limited number of genes. Translation of most genes proceeds past the 5'-proximal codons and can be arrested at more distal codons when the ribosome encounters specific short sequence motifs. The problematic sequence motifs are confined to the nascent peptide residues in the peptidyl transferase center but not to the peptide segment that contacts the antibiotic molecule in the exit tunnel. Therefore, it appears that the general mode of macrolide action involves selective inhibition of peptide bond formation between specific combinations of donor and acceptor substrates. Additional factors operating in the living cell but not functioning during in vitro protein synthesis may modulate site-specific action of macrolide antibiotics.


Assuntos
Antibacterianos/farmacologia , Códon/metabolismo , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Macrolídeos/farmacologia , Ribossomos/metabolismo , Códon/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Estudo de Associação Genômica Ampla , Biossíntese de Proteínas , Ribossomos/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-24303311

RESUMO

Latest genotyping solutions allow for rapid testing of more than two million markers in one experiment. Fully automated instruments such as Affymetrix GeneTitan enable processing of large numbers of samples in a truly high-throughput manner. In concert with solutions like Axiom, fully customizable array plates can now utilize automated workflows that can leverage multi-channel instrumentation like the GeneTitan. With the growing size of raw data output, the serial computational architecture of the software, typically distributed by the vendors on turnkey desktop solutions for quality control and genotype calling, becomes legacy rather than an advantage. Advanced software techniques provide power, flexibility, and can be deployed in an HPC environment, but become technically inconvenient for biologists to use. Here we present a pipeline that uses Galaxy as a mechanism to lower the barrier for complex analysis, and increase efficiency by leveraging high-throughput computing.

10.
Genes Dev ; 26(13): 1498-507, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22751503

RESUMO

Prokaryotic and eukaryotic RNA polymerases can use 2- to ∼4-nt RNAs, "nanoRNAs," to prime transcription initiation in vitro. It has been proposed that nanoRNA-mediated priming of transcription can likewise occur under physiological conditions in vivo and influence transcription start site selection and gene expression. However, no direct evidence of such regulation has been presented. Here we demonstrate in Escherichia coli that nanoRNAs prime transcription in a growth phase-dependent manner, resulting in alterations in transcription start site selection and changes in gene expression. We further define a sequence element that determines, in part, whether a promoter will be targeted by nanoRNA-mediated priming. By establishing that a significant fraction of transcription initiation is primed in living cells, our findings contradict the conventional model that all cellular transcription is initiated using nucleoside triphosphates (NTPs) only. In addition, our findings identify nanoRNAs as a previously undocumented class of regulatory small RNAs that function by being directly incorporated into a target transcript.


Assuntos
Regulação da Expressão Gênica , RNA/genética , Sítio de Iniciação de Transcrição , RNA/biossíntese , Ribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA