Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Exp Eye Res ; 237: 109674, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838300

RESUMO

Eye development and function rely on precise establishment, regression and maintenance of its many sub-vasculatures. These crucial vascular properties have been extensively investigated in eye development and disease utilizing genetic and experimental mouse models. However, due to technical limitations, individual studies have often restricted their focus to one specific sub-vasculature. Here, we apply a workflow that allows for visualization of complete vasculatures of mouse eyes of various developmental stages. Through tissue depigmentation, immunostaining, clearing and light-sheet fluorescence microscopy (LSFM) entire vasculatures of the retina, vitreous (hyaloids) and uvea were simultaneously imaged at high resolution. In silico dissection provided detailed information on their 3D architecture and interconnections. By this method we describe successive remodeling of the postnatal iris vasculature, involving sprouting and pruning, following its disconnection from the embryonic feeding hyaloid vasculature. In addition, we demonstrate examples of conventional and LSFM-mediated analysis of choroidal neovascularization after laser-induced wounding, showing added value of the presented workflow in analysis of modelled eye disease. These advancements in visualization and analysis of the respective eye vasculatures in development and complex eye disease open for novel observations of their functional interplay at a whole-organ level.


Assuntos
Oftalmopatias , Retina , Camundongos , Animais , Microscopia de Fluorescência/métodos
2.
Nat Commun ; 14(1): 3060, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244931

RESUMO

Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.


Assuntos
Músculo Esquelético , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Músculo Esquelético/fisiologia , Miofibrilas/fisiologia , Morfogênese , Mioblastos/fisiologia
3.
Nat Neurosci ; 26(6): 1008-1020, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169859

RESUMO

Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.


Assuntos
Arginase , Microglia , Animais , Feminino , Camundongos , Arginase/genética , Arginase/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo
4.
Acta Neuropathol ; 144(4): 651-676, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040521

RESUMO

Tau pathology of the noradrenergic locus coeruleus (LC) is a hallmark of several age-related neurodegenerative disorders, including Alzheimer's disease. However, a comprehensive neuropathological examination of the LC is difficult due to its small size and rod-like shape. To investigate the LC cytoarchitecture and tau cytoskeletal pathology in relation to possible propagation patterns of disease-associated tau in an unprecedented large-scale three-dimensional view, we utilized volume immunostaining and optical clearing technology combined with light sheet fluorescence microscopy. We examined AT8+ pathological tau in the LC/pericoerulear region of 20 brains from Braak neurofibrillary tangle (NFT) stage 0-6. We demonstrate an intriguing morphological complexity and heterogeneity of AT8+ cellular structures in the LC, representing various intracellular stages of NFT maturation and their diverse transition forms. We describe novel morphologies of neuronal tau pathology such as AT8+ cells with fine filamentous somatic protrusions or with disintegrating soma. We show that gradual dendritic atrophy is the first morphological sign of the degeneration of tangle-bearing neurons, even preceding axonal lesions. Interestingly, irrespective of the Braak NFT stage, tau pathology is more advanced in the dorsal LC that preferentially projects to vulnerable forebrain regions in Alzheimer's disease, like the hippocampus or neocortical areas, compared to the ventral LC projecting to the cerebellum and medulla. Moreover, already in the precortical Braak 0 stage, 3D analysis reveals clustering tendency and dendro-dendritic close appositions of AT8+ LC neurons, AT8+ long axons of NFT-bearing cells that join the ascending dorsal noradrenergic bundle after leaving the LC, as well as AT8+ processes of NFT-bearing LC neurons that target the 4th ventricle wall. Our study suggests that the unique cytoarchitecture, comprised of a densely packed and dendritically extensively interconnected neuronal network with long projections, makes the human LC to be an ideal anatomical template for early accumulation and trans-neuronal spreading of hyperphosphorylated tau.


Assuntos
Doença de Alzheimer , Locus Cerúleo , Doença de Alzheimer/patologia , Humanos , Imageamento Tridimensional , Locus Cerúleo/patologia , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo
6.
Nat Commun ; 13(1): 1537, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318302

RESUMO

Hyperactive Notch signalling is frequently observed in breast cancer and correlates with poor prognosis. However, relatively few mutations in the core Notch signalling pathway have been identified in breast cancer, suggesting that as yet unknown mechanisms increase Notch activity. Here we show that increased expression levels of GIT1 correlate with high relapse-free survival in oestrogen receptor-negative (ER(-)) breast cancer patients and that GIT1 mediates negative regulation of Notch. GIT1 knockdown in ER(-) breast tumour cells increased signalling downstream of Notch and activity of aldehyde dehydrogenase, a predictor of poor clinical outcome. GIT1 interacts with the Notch intracellular domain (ICD) and influences signalling by inhibiting the cytoplasm-to-nucleus transport of the Notch ICD. In xenograft experiments, overexpression of GIT1 in ER(-) cells prevented or reduced Notch-driven tumour formation. These results identify GIT1 as a modulator of Notch signalling and a guardian against breast cancer growth.


Assuntos
Neoplasias da Mama , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Humanos , Recidiva Local de Neoplasia , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135875

RESUMO

The L-type voltage-gated Ca2+ channel gene CACNA1C is a risk gene for various psychiatric conditions, including schizophrenia and bipolar disorder. However, the cellular mechanism by which CACNA1C contributes to psychiatric disorders has not been elucidated. Here, we report that the embryonic deletion of Cacna1c in neurons destined for the cerebral cortex using an Emx1-Cre strategy disturbs spontaneous Ca2+ activity and causes abnormal brain development and anxiety. By combining computational modeling with electrophysiological membrane potential manipulation, we found that neural network activity was driven by intrinsic spontaneous Ca2+ activity in distinct progenitor cells expressing marginally increased levels of voltage-gated Ca2+ channels. MRI examination of the Cacna1c knockout mouse brains revealed volumetric differences in the neocortex, hippocampus, and periaqueductal gray. These results suggest that Cacna1c acts as a molecular switch and that its disruption during embryogenesis can perturb Ca2+ handling and neural development, which may increase susceptibility to psychiatric disease.


Assuntos
Transtornos de Ansiedade/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Animais , Relógios Biológicos , Canais de Cálcio Tipo L/genética , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Camundongos , Camundongos Knockout , Células-Tronco Neurais
8.
Proc Natl Acad Sci U S A ; 117(50): 32005-32016, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33229588

RESUMO

Tumor-associated macrophages (TAMs) can have protumor properties, including suppressing immune responses, promoting vascularization and, consequently, augmenting tumor progression. To stop TAM-mediated immunosuppression, we use a novel treatment by injecting antibodies specific for scavenger receptor MARCO, which is expressed on a specific subpopulation of TAMs in the tumor. We now report the location of this TAM as well as the pleiotropic mechanism of action of anti-MARCO antibody treatment on tumor progression and further show that this is potentially relevant to humans. Using specific targeting, we observed decreased tumor vascularization, a switch in the metabolic program of MARCO-expressing macrophages, and activation of natural killer (NK) cell killing through TNF-related apoptosis-inducing ligand (TRAIL). This latter activity reverses the effect of melanoma cell-conditioned macrophages in blocking NK activation and synergizes with T cell-directed immunotherapy, such as antibodies to PD-1 or PD-L1, to enhance tumor killing. Our study thus reveals an approach to targeting the immunosuppressive tumor microenvironment with monoclonal antibodies to enhance NK cell activation and NK cell-mediated killing. This can complement existing T cell-directed immunotherapy, providing a promising approach to combinatorial immunotherapy for cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Células Matadoras Naturais/imunologia , Melanoma/tratamento farmacológico , Receptores Imunológicos/antagonistas & inibidores , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Células Matadoras Naturais/metabolismo , Masculino , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Knockout , Cultura Primária de Células , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
9.
Nat Biomed Eng ; 4(9): 875-888, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32601394

RESUMO

Microscopy analysis of tumour samples is commonly performed on fixed, thinly sectioned and protein-labelled tissues. However, these examinations do not reveal the intricate three-dimensional structures of tumours, nor enable the detection of aberrant transcripts. Here, we report a method, which we name DIIFCO (for diagnosing in situ immunofluorescence-labelled cleared oncosamples), for the multimodal volumetric imaging of RNAs and proteins in intact tumour volumes and organoids. We used DIIFCO to spatially profile the expression of diverse coding RNAs and non-coding RNAs at the single-cell resolution in a variety of cancer tissues. Quantitative single-cell analysis revealed spatial niches of cancer stem-like cells, and showed that the niches were present at a higher density in triple-negative breast cancer tissue. The improved molecular phenotyping and histopathological diagnosis of cancers may lead to new insights into the biology of tumours of patients.


Assuntos
Imageamento Tridimensional , Neoplasias/patologia , Análise de Célula Única , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biópsia , Embrião de Mamíferos/metabolismo , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Imagem Multimodal , Neoplasias/metabolismo , Fenótipo , RNA/metabolismo
10.
Exp Cell Res ; 395(1): 112156, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707133

RESUMO

Hyperactivated Notch signalling has been implicated in breast cancer, but how elevated levels of Notch signalling contribute to mammary dysplasia and tumorigenesis is not fully understood. In this study, we express an activated form of Notch1 in the mouse mammary luminal lineage and analyse the consequences for tumour formation and the transcriptomic landscape in the luminal lineage. Simultaneous conditional activation of a Notch1 intracellular domain (Notch1 ICD) and EGFP in the luminal lineage was achieved by removal of a stop cassette by CRE-recombinase expression from the whey acidic protein (WAP) promoter. Mice in which Notch1 ICD was activated in the luminal lineage (WAP-CRE;R26-N1ICD mice) exhibit ductal hyperplasia after lactation with an increase in branching frequency and in the number of side-branch ends in the ductal tree. A subset of the mice developed mammary tumours and the majority of the tumour cells expressed EGFP (as a proxy for Notch1 ICD), indicating that the tumours originate from the Notch1 ICD-expressing cells. Single-cell transcriptome analysis of the EGFP-positive mammary cells identified six subtypes of luminal cells. The same six subtypes were found in control mice (WAP-CRE;R26-tdTomato mice expressing the tdTomato reporter from WAP-CRE-mediated activation), but the proportion of cells in the various subtypes differed between the WAP-CRE;R26-N1ICD and control WAP-CRE;R26-tdTomato mice. In conclusion, we show that Notch1 ICD expression in the luminal lineage produces a ductal hyperplasia and branching phenotype accompanied by altered luminal cell subtype partitioning.


Assuntos
Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Hiperplasia/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Feminino , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Animais/patologia , Camundongos Transgênicos , Fenobarbital/metabolismo , Transdução de Sinais/fisiologia
11.
Neuroscience ; 402: 78-89, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30677486

RESUMO

Here we report that the low-voltage-dependent T-type calcium (Ca2+) channel Cav3.2, encoded by the CACNA1H gene, regulates neuronal differentiation during early embryonic brain development through activating caspase-3. At the onset of neuronal differentiation, neural progenitor cells exhibited spontaneous Ca2+ activity. This activity strongly correlated with the upregulation of CACNA1H mRNA. Cells exhibiting robust spontaneous Ca2+ signaling had increased caspase-3 activity unrelated to apoptosis. Inhibition of Cav3.2 by drugs or viral CACNA1H knock down resulted in decreased caspase-3 activity followed by suppressed neurogenesis. In contrast, when CACNA1H was overexpressed, increased neurogenesis was detected. Cortical slices from Cacna1h knockout mice showed decreased spontaneous Ca2+ activity, a significantly lower protein level of cleaved caspase-3, and microanatomical abnormalities in the subventricular/ventricular and cortical plate zones when compared to their respective embryonic controls. In summary, we demonstrate a novel relationship between Cav3.2 and caspase-3 signaling that affects neurogenesis in the developing brain.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Caspase 3/metabolismo , Diferenciação Celular , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Canais de Cálcio Tipo T/genética , Sinalização do Cálcio , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos Laterais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Neuroepiteliais/metabolismo
12.
Br J Cancer ; 118(7): 995-999, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29515257

RESUMO

BACKGROUND: Cancers are heterogeneous and contain various types of irregular structures that can go undetected when examining them with standard two-dimensional microscopes. Studies of intricate networks of vasculature systems, e.g., the tumour lymphatic microvessels, benefit largely from three-dimensional imaging data analysis. METHODS: The new DIPCO (Diagnosing Immunolabeled Paraffin-Embedded Cleared Organs) imaging platform uses three-dimensional light-sheet microscopy and whole-mount immunolabelling of cleared samples to study proteins and micro-anatomies deep inside of tumours. RESULTS: Here, we uncovered the whole three-dimensional lymphatic microvasculature of formalin-fixed paraffin-embedded (FFPE) tumours from a cohort of 30 patients with bladder cancer. Our results revealed more heterogeneous spatial deviations in more advanced bladder tumours. We also showed that three-dimensional imaging could determine tumour stage and identify vascular or lymphatic system invasion with higher accuracy than standard two-dimensional histological diagnostic methods. There was no association between sample storage times and outcomes, demonstrating that the DIPCO pipeline could be successfully applied on old FFPE samples. CONCLUSIONS: Studying tumour samples with three-dimensional imaging could help us understand the pathological nature of cancers and provide essential information that might improve the accuracy of cancer staging.


Assuntos
Carcinoma de Células de Transição/diagnóstico , Vasos Linfáticos/diagnóstico por imagem , Microscopia/métodos , Neoplasias da Bexiga Urinária/diagnóstico , Carcinoma de Células de Transição/patologia , Formaldeído , Humanos , Imageamento Tridimensional , Estadiamento de Neoplasias , Inclusão em Parafina , Preservação de Tecido/métodos , Neoplasias da Bexiga Urinária/patologia
13.
Nat Biomed Eng ; 2(10): 717-718, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-31015646
15.
Nat Biomed Eng ; 1(10): 796-806, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31015588

RESUMO

Intratumoral heterogeneity is a critical factor when diagnosing and treating patients with cancer. Marked differences in the genetic and epigenetic backgrounds of cancer cells have been revealed by advances in genome sequencing, yet little is known about the phenotypic landscape and the spatial distribution of intratumoral heterogeneity within solid tumours. Here, we show that three-dimensional light-sheet microscopy of cleared solid tumours can identify unique patterns of phenotypic heterogeneity, in the epithelial-to-mesenchymal transition and in angiogenesis, at single-cell resolution in whole formalin-fixed paraffin-embedded (FFPE) biopsy samples. We also show that cleared FFPE samples can be re-embedded in paraffin after examination for future use, and that our tumour-phenotyping pipeline can determine tumour stage and stratify patient prognosis from clinical samples with higher accuracy than current diagnostic methods, thus facilitating the design of more efficient cancer therapies.

16.
Proc Natl Acad Sci U S A ; 112(36): E4985-94, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305926

RESUMO

The preoptic area (POa) of the rostral diencephalon supplies the neocortex and the amygdala with GABAergic neurons in the developing mouse brain. However, the molecular mechanisms that determine the pathway and destinations of POa-derived neurons have not yet been identified. Here we show that Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII)-induced expression of Neuropilin-2 (Nrp2) and its down-regulation control the destination of POa-derived GABAergic neurons. Initially, a majority of the POa-derived migrating neurons express COUP-TFII and form a caudal migratory stream toward the caudal subpallium. When a subpopulation of cells steers toward the neocortex, they exhibit decreased expression of COUP-TFII and Nrp2. The present findings show that suppression of COUP-TFII/Nrp2 changed the destination of the cells into the neocortex, whereas overexpression of COUP-TFII/Nrp2 caused cells to end up in the medial part of the amygdala. Taken together, these results reveal that COUP-TFII/Nrp2 is a molecular switch determining the pathway and destination of migrating GABAergic neurons born in the POa.


Assuntos
Encéfalo/metabolismo , Fator II de Transcrição COUP/metabolismo , Diencéfalo/metabolismo , Neurônios GABAérgicos/metabolismo , Neuropilina-2/metabolismo , Tonsila do Cerebelo/embriologia , Tonsila do Cerebelo/metabolismo , Animais , Western Blotting , Encéfalo/embriologia , Fator II de Transcrição COUP/genética , Movimento Celular/genética , Diencéfalo/embriologia , Neurônios GABAérgicos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos Endogâmicos ICR , Camundongos Knockout , Microscopia Confocal , Neocórtex/embriologia , Neocórtex/metabolismo , Neuropilina-2/genética , Área Pré-Óptica/embriologia , Área Pré-Óptica/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas de Cultura de Tecidos
17.
Dev Neurobiol ; 75(4): 360-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25652687

RESUMO

The calcium ion (Ca(2+) ) is an essential second messenger that plays a pivotal role in neurogenesis. In the ventricular zone (VZ) of the neocortex, neural stem cells linger to produce progenitor cells and subsequently neurons and glial cells, which together build up the entire adult brain. The radial glial cells, with their characteristic radial fibers that stretch from the inner ventricular wall to the outer cortex, are known to be the neural stem cells of the neocortex. Migrating neurons use these radial fibers to climb from the proliferative VZ in the inner part of the brain to the outer layers of the cortex, where differentiation processes continue. To establish the complex structures that constitute the adult cerebral cortex, proliferation, migration, and differentiation must be tightly controlled by various signaling events, including cytosolic Ca(2+) signaling. During development, cells regularly exhibit spontaneous Ca(2+) activity that stimulates downstream effectors, which can elicit these fundamental cell processes. Spontaneous Ca(2+) activity during early neocortical development depends heavily on gap junctions and voltage dependent Ca(2+) channels, whereas later in development neurotransmitters and synapses exert an influence. Here, we provide an overview of the literature on Ca(2+) signaling and its impact on cell proliferation, migration, and differentiation in the neocortex. We point out important historical studies and review recent progress in determining the role of Ca(2+) signaling in neocortical development.


Assuntos
Sinalização do Cálcio/fisiologia , Neocórtex , Neurônios/fisiologia , Animais , Movimento Celular , Humanos , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia
18.
Cereb Cortex ; 25(4): 991-1003, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24142862

RESUMO

Interneuron dysfunction in humans is often associated with neurological and psychiatric disorders, such as epilepsy, schizophrenia, and autism. Some of these disorders are believed to emerge during brain formation, at the time of interneuron specification, migration, and synapse formation. Here, using a mouse model and a host of histological and molecular biological techniques, we report that the signaling molecule cyclin-dependent kinase 5 (Cdk5), and its activator p35, control the tangential migration of interneurons toward and within the cerebral cortex by modulating the critical neurodevelopmental signaling pathway, ErbB4/phosphatidylinositol 3-kinase, that has been repeatedly linked to schizophrenia. This finding identifies Cdk5 as a crucial signaling factor in cortical interneuron development in mammals.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/fisiologia , Quinase 5 Dependente de Ciclina/metabolismo , Interneurônios/fisiologia , Receptor ErbB-4/metabolismo , Animais , Células COS , Córtex Cerebral/embriologia , Quinase 5 Dependente de Ciclina/genética , Neurônios GABAérgicos/fisiologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Queratinas/metabolismo , Camundongos Transgênicos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Receptor ErbB-4/genética , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 110(16): E1524-32, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23576737

RESUMO

Coherent network activity among assemblies of interconnected cells is essential for diverse functions in the adult brain. However, cellular networks before formations of chemical synapses are poorly understood. Here, embryonic stem cell-derived neural progenitors were found to form networks exhibiting synchronous calcium ion (Ca(2+)) activity that stimulated cell proliferation. Immature neural cells established circuits that propagated electrical signals between neighboring cells, thereby activating voltage-gated Ca(2+) channels that triggered Ca(2+) oscillations. These network circuits were dependent on gap junctions, because blocking prevented electrotonic transmission both in vitro and in vivo. Inhibiting connexin 43 gap junctions abolished network activity, suppressed proliferation, and affected embryonic cortical layer formation. Cross-correlation analysis revealed highly correlated Ca(2+) activities in small-world networks that followed a scale-free topology. Graph theory predicts that such network designs are effective for biological systems. Taken together, these results demonstrate that immature cells in the developing brain organize in small-world networks that critically regulate neural progenitor proliferation.


Assuntos
Encéfalo/embriologia , Proliferação de Células , Rede Nervosa , Células-Tronco Neurais/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Conexina 43/metabolismo , Sinapses Elétricas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Interferência , Modelos Neurológicos , Células-Tronco Neurais/citologia , Plasmídeos/genética , RNA Interferente Pequeno/genética
20.
Eur J Neurosci ; 36(3): 2273-83, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22591399

RESUMO

Adult hippocampal neural stem cells can be activated by hippocampal neural activities. When focal cerebral ischemia, known as middle cerebral artery occlusion (MCAO), occurs, neural stem cells are activated to promote their proliferation. However, the mechanism by which these cells are activated is still unclear. Here, we indicate the involvement of metabotropic glutamate receptor 5 (mGluR5) signaling in neural stem cells in their activity-related proliferation after MCAO. We found mGluR5 molecules on neural stem cells by using calcium imaging. We detected the activation of neural stem cells by adding the mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine. On a hippocampal slice, the activation of neural stem cells to promote their proliferation was initiated by theta-burst electrical stimulation at the perforant pathway, and this activation was significantly blocked by an mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP). In addition to this, the injection of the blood-brain barrier-permeable mGluR5 agonist 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide into live mice promoted the proliferation of neural stem cells. Moreover, in vivo theta-burst electrical stimulation induced proliferation of neural stem cells. A chronic field recording study showed that the activity of the hippocampal formation was elevated after MCAO. Finally, we observed that the mGluR5 antagonist MPEP significantly blocked the stimulated proliferation of neural stem cells induced by MCAO, by blocking mGluR5 signaling. Our results suggest that glutamates released by the elevated neural activities after MCAO may trigger mGluR5 signaling in neural stem cells to promote their proliferation.


Assuntos
Proliferação de Células , Hipocampo/crescimento & desenvolvimento , Células-Tronco Neurais/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais , Ritmo Teta , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Benzamidas/farmacologia , Sinalização do Cálcio , Estimulação Elétrica , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Hipocampo/irrigação sanguínea , Hipocampo/patologia , Infarto da Artéria Cerebral Média/patologia , Camundongos , Camundongos Endogâmicos ICR , Células-Tronco Neurais/citologia , Fenilacetatos/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA