Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; PP2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968022

RESUMO

OBJECTIVE: This paper presents an ultra-miniaturized circular-shaped triple band microstrip antenna as an intraocular unit applicable for retinal prosthesis. METHODS: The reported antenna is developed by modifying a conventional circular-shaped patch with a pair of open-ended circular annular rings and a semicircular ring-loaded rectangular stub. Additionally, a shorting pin is used at the periphery of the patch to achieve the frequency bands of interest. Further, to make the structure electrically small and accommodate highly dense electrodes, the circular ground plane is modified by making symmetrical slots over the four quadrants and edges. Specific absorption rate distribution for 1g and 10g of different tissue layers over three operating frequencies has been studied by placing electromagnetic sources at different locations. RESULTS: With these arrangements, the proposed strip antenna offers multiband operation within the frequency band of 1.25 GHz (1.13-1.46 GHz), 2.45 GHz (2.24-2.66 GHz), and 3.32 GHz (3.09-3.50 GHz). Besides, circularly polarized radiation has also been achieved at 1.25 GHz with a 3-dB axial ratio bandwidth of 10 MHz. CONCLUSION: Finally, the proposed antenna structure is fabricated, and its measured performance metrics are in close aggreement with the simulated parameters. SIGNIFICANCE: The proposed antenna's performance inside a customized canonical eye model (DMCM) and anthropomorphic Zubal head model is studied and compared with the prior studies.

2.
Sci Rep ; 14(1): 7447, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548782

RESUMO

This paper proposes a circularly polarized ultra-thin flexible antenna with a flexible rectifier and power management unit (PMU) for smartwatch/wristband applications. The flexible antenna is compact (0.17λ0 × 0.20λ0 × 0.0004λ0) and has a stepped ground plane. A parasitic element is used at the substrate bottom to reduce the specific absorption rate (SAR) and enhance the gain up to 3.2 dBi, at the resonating frequency of WLAN/Wi-Fi (2.45 GHz). The SAR of the proposed design is also analysed at the resonating frequency, and it satisfies the guidelines of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and IEEE C95.1-2019 human safety standards. An impedance matching circuit is used between the antenna and the RF energy harvester to improve conversion efficiency. Polarization mismatch is avoided with the help of circular polarization, achieved by tuning stubs of size 0.02λ0 × 0.044λ0. The integration of the antenna and rectenna results in a good conversion efficiency of 78.2% at - 5 dBm of input power with a load resistance of 2 KΩ. The availability of RF signals allows the user to charge the smartwatch/wristband by connecting the PMU circuit with the RF energy harvester.

3.
Sci Rep ; 13(1): 9935, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336931

RESUMO

Assistive devices are becoming increasingly popular for physically disabled persons suffering tetraplegia and spinal cord injuries. Intraoral tongue drive system (iTDS) is one of the most feasible and non-invasive assistive technology (AT), which utilises the transferring and inferring of user intentions through different tongue gestures. Wireless transferring is of prime importance and requires a suitable design of the intra-oral antenna. In this paper, a compact circularly polarized differential intra-oral antenna is designed, and its performance is analysed within heterogeneous multilayer mouth and head models. It works at 2.4 GHz in the Industrial, Scientific, and Medical (ISM) band. The footprint of the differential antenna prototype is 0.271 λg [Formula: see text] 0.271 λg [Formula: see text] 0.015 λg. It is achieved using two pairs of spiral segments loaded in diagonal form near the edges of the central rotated square slot and a high dielectric constant substrate. Its spiral-slotted geometry further provides the desired swirling and miniaturization at the desired frequency band for both mouth scenarios. Additionally, corner triangular slits on the radiating patch assist in tuning the axial ratio (< 3 dB) in the desired ISM band. To validate the performance of the proposed in-mouth antenna, the measurement was carried out using the minced pork and the saline solution for closed and opened mouth cases, respectively. The measured - 10 dB impedance bandwidth and peak gain values in the minced pork are from 2.28 to 2.53 GHz (10.39%) and - 18.17 dBi, respectively, and in the saline solution, are from 2.3 to 2.54 GHz (9.92%) and - 15.47 dBi, respectively. Further, the specific absorption rate (SAR) is estimated, and the data communication link is computed with and without a balun loss. This confirms that the proposed differential intraoral antenna can establish direct interfacing at the RF front end of the intraoral tongue drive system.


Assuntos
Tecnologia Assistiva , Tecnologia sem Fio , Solução Salina , Desenho de Equipamento , Língua
4.
Sci Rep ; 13(1): 9557, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308491

RESUMO

Cardiovascular diseases (CVDs) are one of the leading causes of death globally. The Internet of things (IoT) enabled with industrial, scientific, and medical (ISM) bands (2.45 and 5.8 GHz) facilitates pacemakers to remotely share heart health data to medical professionals. For the first time, communication between a compact dual-band two-port multiple-input-multiple-output (MIMO) antenna (integrated inside the leadless pacemaker) and an outside-body dual-band two-port MIMO antenna in the ISM 2.45 and 5.8 GHz frequency bands is demonstrated in this work. The proposed communication system offers an attractive solution for cardiac pacemakers as it can operate on a 5G IoT platform while also being compatible with existing 4G standards. The experimental verification of the proposed MIMO antenna low-loss communication capability is also presented by comparing it to the existing single-input-single-output communication between the leadless pacemaker and outside body monitoring device.

5.
Micromachines (Basel) ; 13(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36557538

RESUMO

In this article, a triple-band quad-element stacked multiple-input-multiple-output (MIMO) antenna is proposed for sensing applications. Each radiating element of the presented MIMO antenna consists of a diagonally truncated square patch, which is proximity coupled to the elliptical radiating patch. The proposed MIMO antenna is designed to resonate for three frequencies (4.2, 4.8, and 5.8 GHz) in the C-band range. The antenna shows circular polarization characteristics at 4.2 and 4.8 GHz frequencies. Each stacked element of the proposed antenna is excited independently through a 50 Ω coaxial feed. The Rogers RT Duroid/5880 dielectric substrate is used for the fabrication of two layers of the stacked MIMO antenna. The presented stacked MIMO antenna simulation and experimental outcomes are in good agreement.

6.
IEEE Trans Biomed Eng ; 69(11): 3504-3515, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35503844

RESUMO

OBJECTIVE: This paper presents the design of an electrically small circularly polarized (CP) 3 × 3 mm2 antenna system as an intraocular unit for retinal prosthesis application. METHODS: The system is operating in ISM and ultra-wideband (UWB) bands to target high programmability of retina stimulation and recording, respectively. The electrical dimensions, including the ground plane, are λ0/41 × λ0/41 × λ0/191. Physical limitations of the antenna are discussed based on Hansen and Collin's limitations. The proposed wire patch antenna exhibits wideband characteristics by combining multiple modes of the patch antenna in the presence of an interface PCB circuit. RESULTS: By loading polyimide encapsulated patch with stubs, dominant TM010 mode is combined with the higher order modes TM020-TM070 to exhibit wide -10 dB impedance bandwidth of 2-11 GHz. Annular rings and shorting pins in the ground plane provide CP radiation at 2.45, 5.8, and 8 GHz with 3-dB axial-ratio bandwidth of 0.3, 0.16, and 1.2 GHz, and far-field left hand circularly polarized (LHCP) gain of -18.4, -7.6, and -4.7 dBic, respectively, in broadside direction. A biocompatible antenna system is designed using Ansys HFSS in the presence of a detailed multilayer canonical eye model. Additionally, it is examined in an anatomical HFSS head model. Near and far-field electric field distribution is studied along with peak 1-g average specific absorption rate (SAR) calculations. CONCLUSION: The proposed antenna is fabricated, and the performance, including coupled power from an external antenna, is measured in a custom made eye model including head phantom. A reasonable agreement is obtained between simulated and measured results. SIGNIFICANCE: To generate an artificial vision, image perception capability could be improved with implantable UWB communication systems that feature particularly high data-rate and small size.


Assuntos
Próteses Visuais , Tecnologia sem Fio , Desenho de Equipamento , Impedância Elétrica
7.
Sci Rep ; 12(1): 3165, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210497

RESUMO

The leadless cardiac pacemaker is a pioneering device for heart patients. Its rising success requires the design of compact implantable antennas. In this paper, we describe a circularly polarized Hilbert curve inspired loop antenna. The proposed antenna works in the WMTS (Wireless Medical Telemetry Services) 1.4 GHz and ISM (Industrial, Scientific, and Medical) 2.45 GHz bands. High dielectric constant material Rogers RT/Duroid 6010 LM ([Formula: see text]=10) and fractal geometry helps to design the antenna with a small footprint of 9.1 mm3 (6 mm × 6 mm × 0.254 mm). The designed antenna has a conformal shape that fits inside a leadless pacemaker's capsule is surrounded by IC models and battery, which are tightly packed in the device enclosure. Subsequently, the integrated prototype is simulated deep inside at the center of the multi-layer canonical heart model. To verify experimentally, we have put dummy electronics (IC and battery) inside the 3D printed pacemaker's capsule and surfaced the fabricated conformal antenna around the inner curved body of the TCP (Transcatheter Pacing) capsule. Furthermore, we have tested the TCP capsule by inserting it in a ballistic gel phantom and minced pork. The measured impedance bandwidths at 1.4 GHz and 2.45 GHz are 250 MHz and 430 MHz, whereas measured gains are - 33.2 dBi, and - 28.5 dBi, respectively.

8.
Sci Rep ; 10(1): 6795, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321962

RESUMO

The paper presents a coplanar waveguide (CPW)-fed ultra-miniaturized patch antenna operating in Industrial, Scientific and Medical (ISM) band (2.4-2.5 GHz) for biotelemetry applications. The proposed antenna structure is circular in shape and its ground plane is loaded with a pair of slots for obtaining circular polarization. In the proposed design, asymmetric square slots generate phase condition for right-hand circularly polarized (RHCP) radiation. And, by merely changing the position of the slots, either RHCP or left-hand circularly polarized (LHCP) radiation can be excited. In the proposed design, a meandered central strip is used for miniaturization. The simulations of the proposed antenna are carried out using Ansys HFSS software with a single-layer and multilayer human tissue models. The antenna shows good performance for different tissue properties owing to its wide axial ratio bandwidth and impedance bandwidth. The antenna is fabricated and measurements are carried out in skin mimicking phantom and pork. Simulated and measured performances of the antenna are in close agreement. The power link budget is also calculated using an exterior circularly polarized (CP) receiving antenna.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA