Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Life Sci ; 346: 122632, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615748

RESUMO

Mycobacterium Tuberculosis (Mtb) causing Tuberculosis (TB) is a widespread disease infecting millions of people worldwide. Additionally, emergence of drug resistant tuberculosis is a major challenge and concern in high TB burden countries. Most of the drug resistance in mycobacteria is attributed to developing acquired resistance due to spontaneous mutations or intrinsic resistance mechanisms. In this review, we emphasize on the role of bacterial cell cycle synchronization as one of the intrinsic mechanisms used by the bacteria to cope with stress response and perhaps involved in evolution of its drug resistance. The importance of cell cycle synchronization and its function in drug resistance in cancer cells, malarial and viral pathogens is well understood, but its role in bacterial pathogens has yet to be established. From the extensive literature survey, we could collect information regarding how mycobacteria use synchronization to overcome the stress response. Additionally, it has been observed that most of the microbial pathogens including mycobacteria are responsive to drugs predominantly in their logarithmic phase, while they show resistance to antibiotics when they are in the lag or stationary phase. Therefore, we speculate that Mtb might use this novel strategy wherein they regulate their cell cycle upon antibiotic pressure such that they either enter in their low metabolic phase i.e., either the lag or stationary phase to overcome the antibiotic pressure and function as persister cells. Thus, we propose that manipulating the mycobacterial drug resistance could be possible by fine-tuning its cell cycle.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Humanos , Antituberculosos/farmacologia , Ciclo Celular/efeitos dos fármacos , Farmacorresistência Bacteriana , Mycobacterium/efeitos dos fármacos , Mycobacterium/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose/microbiologia , Tuberculose/tratamento farmacológico
2.
Life Sci ; 274: 119301, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33675895

RESUMO

Tuberculosis is one of the deadliest infectious diseases existing in the world since ancient times and still possesses serious threat across the globe. Each year the number of cases increases due to high drug resistance shown by Mycobacterium tuberculosis (Mtb). Available antimycobacterial drugs have been classified as First line, Second line and Third line antibiotics depending on the time of their discoveries and their effectiveness in the treatment. These antibiotics have a broad range of targets ranging from cell wall to metabolic processes and their non-judicious and uncontrolled usage in the treatment for years has created a significant problem called multi-drug resistant (MDR) tuberculosis. In this review, we have summarized the mechanism of action of all the classified antibiotics currently in use along with the resistance mechanisms acquired by Mtb. We have focused on the new drug candidates/repurposed drugs, and drug in combinations, which are in clinical trials for either treating the MDR tuberculosis more effectively or involved in reducing the time required for the chemotherapy of drug sensitive TB. This information is not discussed very adequately on a single platform. Additionally, we have discussed the recent technologies that are being used to discover novel resistance mechanisms acquired by Mtb and for exploring novel drugs. The story of intrinsic resistance mechanisms and evolution in Mtb is far from complete. Therefore, we have also discussed intrinsic resistance mechanisms of Mtb and their evolution with time, emphasizing the hope for the development of novel antimycobacterial drugs for effective therapy of tuberculosis.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/classificação , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Animais , Antituberculosos/classificação , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
3.
Biochem J ; 477(10): 1879-1892, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32285912

RESUMO

Calcium (Ca2+) signaling is involved in the regulation of diverse biological functions through association with several proteins that enable them to respond to abiotic and biotic stresses. Though Ca2+-dependent signaling has been implicated in the regulation of several physiological processes in Chlamydomonas reinhardtii, Ca2+ sensor proteins are not characterized completely. C. reinhardtii has diverged from land plants lineage, but shares many common genes with animals, particularly those encoding proteins of the eukaryotic flagellum (or cilium) along with the basal body. Calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, is an important effector of Ca2+ signaling in animals, while calcineurin B-like proteins (CBLs) play an important role in Ca2+ sensing and signaling in plants. The present study led to the identification of 13 novel CBL-like Ca2+ sensors in C. reinhardtii genome. One of the archetypical genes of the newly identified candidate, CrCBL-like1 was characterized. The ability of CrCBL-like1 protein to sense as well as bind Ca2+ were validated using two-step Ca2+-binding kinetics. The CrCBL-like1 protein localized around the plasma membrane, basal bodies and in flagella, and interacted with voltage-gated Ca2+ channel protein present abundantly in the flagella, indicating its involvement in the regulation of the Ca2+ concentration for flagellar movement. The CrCBL-like1 transcript and protein expression were also found to respond to abiotic stresses, suggesting its involvement in diverse physiological processes. Thus, the present study identifies novel Ca2+ sensors and sheds light on key players involved in Ca2+signaling in C. reinhardtii, which could further be extrapolated to understand the evolution of Ca2+ mediated signaling in other eukaryotes.


Assuntos
Proteínas de Ligação ao Cálcio , Chlamydomonas reinhardtii , Receptores de Detecção de Cálcio , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina/metabolismo , Membrana Celular/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Genoma de Planta , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Estresse Fisiológico
4.
Biochem J ; 473(21): 3889-3901, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27551108

RESUMO

Transglutaminase 2 (TG2) is a ubiquitously expressed multifunctional member of the transglutaminase enzyme family. It has been implicated to have roles in many physiological and pathological processes such as differentiation, apoptosis, signal transduction, adhesion and migration, wound healing and inflammation. Previous studies revealed that TG2 has various intra- and extra-cellular interacting partners, which contribute to these processes. In the present study, we identified a molecular co-chaperone, DNAJA1, as a novel interacting partner of human TG2 using a GST pull-down assay and subsequent mass spectrometry analysis, and further confirmed this interaction via ELISA and surface plasmon resonance measurements. Interaction studies were also performed with domain variants of TG2 and results suggest that the catalytic core domain of TG2 is essential for the TG2-DNAJA1 interaction. Cross-linking activity was not essential for the interaction since DNAJA1 was also found to interact with the catalytically inactive form of TG2. Furthermore, we have showed that DNAJA1 interacts with the open form of TG2 and regulates its transamidation activity under both in vitro and in situ conditions. We also found that DNAJA1 is a glutamine donor substrate of TG2. Since DNAJA1 and TG2 are reported to regulate common pathological conditions such as neurodegenerative disorders and cancer, the findings in the present paper open up possibilities to explore molecular mechanisms behind TG2-regulated functions.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Transglutaminases/metabolismo , Aminas/metabolismo , Ensaio de Imunoadsorção Enzimática , Glutamina/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Estabilidade Proteica , Ressonância de Plasmônio de Superfície , Espectrometria de Massas em Tandem
5.
Cell Mol Life Sci ; 72(16): 3009-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25943306

RESUMO

Transglutaminase 2 (TG2) is a ubiquitously expressed member of an enzyme family catalyzing Ca(2+)-dependent transamidation of proteins. It is a multifunctional protein having several well-defined enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, and protein kinase activities) and non-enzymatic (multiple interactions in protein scaffolds) functions. Unlike its enzymatic interactions, the significance of TG2's non-enzymatic regulation of its activities has recently gained importance. In this review, we summarize all the partners that directly interact with TG2 in a non-enzymatic manner and analyze how these interactions could modulate the crosslinking activity and cellular functions of TG2 in different cell compartments. We have found that TG2 mostly acts as a scaffold to bridge various proteins, leading to different functional outcomes. We have also studied how specific structural features, such as intrinsically disordered regions and embedded short linear motifs contribute to multifunctionality of TG2. Conformational diversity of intrinsically disordered regions enables them to interact with multiple partners, which can result in different biological outcomes. Indeed, ID regions in TG2 were identified in functionally relevant locations, indicating that they could facilitate conformational transitions towards the catalytically competent form. We reason that these structural features contribute to modulating the physiological and pathological functions of TG2 and could provide a new direction for detecting unique regulatory partners. Additionally, we have assembled all known anti-TG2 antibodies and have discussed their significance as a toolbox for identifying and confirming novel TG2 regulatory functions.


Assuntos
Anticorpos/imunologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Regulação da Expressão Gênica/fisiologia , Modelos Moleculares , Mapeamento de Interação de Proteínas , Transglutaminases/metabolismo , Transglutaminases/fisiologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Fibronectinas/metabolismo , Proteínas de Ligação ao GTP/imunologia , Regulação da Expressão Gênica/genética , Humanos , Integrinas/metabolismo , Conformação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Receptores de Fatores de Crescimento/metabolismo , Receptores de LDL/metabolismo , Sindecana-4/metabolismo , Transglutaminases/imunologia
6.
Int J Med Microbiol ; 305(2): 243-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25595022

RESUMO

HAMP domains are small protein modules that predominantly operate as signal transducers in bacterial sensor proteins most of which are membrane delimited. The domain organization of such sensors has the HAMPs localized at the intersection between the membrane-anchored input sensor and the cytosolic output machinery. The data summarized here indicate that HAMP modules use a universal signaling language in balancing the communication between diverse membrane-bound input domains and cytosolic output domains that are completely foreign to each other.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Membrana/química , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína
7.
Biochem J ; 455(3): 261-72, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23941696

RESUMO

TG2 (transglutaminase 2) is a calcium-dependent protein cross-linking enzyme which is involved in a variety of cellular processes. The threshold level of calcium needed for endogenous and recombinant TG2 activity has been controversial, the former being more sensitive to calcium than the latter. In the present study we address this question by identifying a single amino acid change from conserved valine to glycine at position 224 in recombinant TG2 compared with the endogenous sequence present in the available genomic databases. Substituting a valine residue for Gly224 in the recombinant TG2 increased its calcium-binding affinity and transamidation activity 10-fold and isopeptidase activity severalfold, explaining the inactivity of widely used recombinant TG2 at physiological calcium concentrations. ITC (isothermal titration calorimetry) measurements showed 7-fold higher calcium-binding affinities for TG2 valine residues which could be activated inside cells. The two forms had comparable substrate- and GTP-binding affinities and also bound fibronectin similarly, but coeliac antibodies had a higher affinity for TG2 valine residues. Structural analysis indicated a higher stability for TG2 valine residues and a decrease in flexibility of the calcium-binding loop resulting in improved metal-binding affinity. The results of the present study suggest that Val224 increases TG2 activity by modulating its calcium-binding affinity enabling transamidation reactions inside cells.


Assuntos
Cálcio/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismo , Valina/genética , Sítios de Ligação , Carbono-Nitrogênio Liases/metabolismo , Glicina/genética , Glicina/metabolismo , Células HEK293 , Humanos , Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
J Biol Chem ; 285(3): 2090-9, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19923210

RESUMO

The Escherichia coli chemoreceptors for serine (Tsr) and aspartate (Tar) and several bacterial class III adenylyl cyclases (ACs) share a common molecular architecture; that is, a membrane anchor that is linked via a cytoplasmic HAMP domain to a C-terminal signal output unit. Functionality of both proteins requires homodimerization. The chemotaxis receptors are well characterized, whereas the typical hexahelical membrane anchor (6TM) of class III ACs, suggested to operate as a channel or transporter, has no known function beyond a membrane anchor. We joined the intramolecular networks of Tsr or Tar and two bacterial ACs, Rv3645 from Mycobacterium tuberculosis and CyaG from Arthrospira platensis, across their signal transmission sites, connecting the chemotaxis receptors via different HAMP domains to the catalytic AC domains. AC activity in the chimeras was inhibited by micromolar concentrations of l-serine or l-aspartate in vitro and in vivo. Single point mutations known to abolish ligand binding in Tar (R69E or T154I) or Tsr (R69E or T156K) abrogated AC regulation. Co-expression of mutant pairs, which functionally complement each other, restored regulation in vitro and in vivo. Taken together, these studies demonstrate chemotaxis receptor-mediated regulation of chimeric bacterial ACs and connect chemical sensing and AC regulation.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Células Quimiorreceptoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Inibidores de Adenilil Ciclases , Adenilil Ciclases/química , Sequência de Aminoácidos , Ácido Aspártico/farmacologia , Proteínas de Bactérias/química , Células Quimiorreceptoras/química , Cianobactérias/enzimologia , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Proteínas Quimiotáticas Aceptoras de Metil , Dados de Sequência Molecular , Mycobacterium tuberculosis/enzimologia , Estrutura Terciária de Proteína , Receptores de Superfície Celular , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência , Serina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA